647 resultados para ISOTACTIC-POLYPROPYLENE
Resumo:
The effect of mechano-chemically bound polypropylene modifiers on the mechanical performance and thermal-oxidative stability of polypropylene composites has been studied. The mechanical performance of unmodified polypropylene containing silane coupled glass and Rockwool (mineral) fibre was poor by comparison with a similar commercially produced glass reinforced composite; this was attributed to poor fibre-matrix adhesion. Mechano-chemical binding with unsaturated additives was obtained in the presence of a free radical initiator (di-cumyl peroxide). This process was inhibited by stabilisers present in commercial grades of polypropylene composites by chemical bond formation between the chemically bound modifier and the silane coupling agent on the fibre surface, resulting in a dramatic improvement in the mechanical properties, dimensional stability and retention of mechanical performance after immersion in fluids typically found in under-bonnet environments.A feature unique to some of these modifiers was their ability not only to enhance the mechanical properties of polypropylene composites to levels substantially in excess of currently available commercial materials, but their ability to act as effective thermal-oxidative polypropylene stabilisers. The mode of action was shown to be a chain-breaking mechanism and as a result of the high binding levels achieved during melt processing, these modifiers were able to efficiently stabilise polypropylene in the most severe volatilising and solvent-extracting environments, thus giving much better protection to the polymer than currently available commercially stabilised grades of polypropylene.
Resumo:
The potential replacement, partially or fully, of synthetic additives by bio-based alternatives derived from indigenous renewable non-food crop resources offers a market opportunity for a green supply of raw materials for different industrial and health products, with greater involvement of the farming community in crop production while addressing the ever more stringent environmental and pollution laws that now require the use of less potentially toxic/harmful ingredients, even if they are present in relatively small quantities. The work presented here relates to developing a new genre of environmentally-sustainable bio-based antioxidants (AO) for industrial uses that are obtained from extracts of UK-grown rosemary (Rosmarinus officinalis) plant. The performance of these AOs was tested, and their efficacy compared with some common and benchmark synthetic AOs from the same chemical class, in different products including polymers especially for packaging, as well as lubricants, cosmetics and health products. One of the main active ingredients in rosemary is Rosmarinic acid which is a water-soluble compound. This was chemically transformed into a number of ester derivatives, Rosmarinates, targeted for different applications. The parent and the modified antioxidants (the rosmarinates) were characterised and their antioxidancy were examined and tested in linear low-density polyethylene (LLDPE) and in polypropylene (PP) and compared with compounds of similar structure and with other well known synthetic antioxidants used commercially in polyolefins. The results show that antioxidants sourced from rosemary have the added benefit of being highly efficient and intrinsically more active than many synthetic and bio-based alternatives.
Resumo:
The Haloclean process, a rotary kiln process for pyrolysis, developed by researchers at the Forschungszentrum Karlsruhe, Germany makes it possible to recover copper and precious metals from the scrap, ready for recycling. Pyrolysis neatly turns brominated electronic scrap plastics into recyclable copper and methanol feedstock while removing the halogens. The process has demonstrated its ability to recycle brominated electronic scrap in extensive parametric studies. A method suitable for the selective production of HBr in the presence of chlorine is the treatment of the pyrolysis oils with molten polypropylene. This treatment is offers the possibility to use the gas and liquid fraction from pyrolysis of electronic scrap as fossil fuel substitute in copper smelter processes or as feedstock for methanol production via gasification.
Resumo:
The development of an innovative technology for the pyrolytic conversion of brominated phenols in a reductive medium aimed at product recovery for commercial use is discussed in this paper. Brominated phenols are toxic products, which contaminate pyrolysis oil of wastes from electronic and electrical equipment (WEEE). The pyrolysis experiments were carried out with 2,6-dibromophenol, tetrabromobisphenol A, WEEE pyrolysis oil and polypropylene or polyethylene in encapsulated ampoules under inert atmosphere in quasi-isothermal conditions (300-400 °C) with a different residence time (10-30 min). Optimal conditions were found to be the use of polypropylene at 350 °C with a residence time of 20 min. The main pyrolysis products were identified as HBr and phenol. A radical debromination mechanism for the pyrolytic destruction of brominated phenols is suggested. © 2003 Elsevier Science B.V. All rights reserved.
Resumo:
An overview of the antioxidant role of the biologically active form of vitamin E, α-tocopherol, in polyolefins is discussed. The effect of the vitamin antioxidant on the melt and colour stability of polyethylene (PE) and polypropylene (PP) is highlighted. It is shown that tocopherol is a highly effective antioxidant that results in superior melt stabilisation of polyolefins particularly when used at much lower concentration than that needed for conventional synthetic hindered phenol processing stabilisers. As with other hindered phenols,α-tocopherol imparts also some colour to the polymer but this is shown to be reduced drastically in the presence of other antioxidants, such as phosphites, or other additives, such as polyhydric alcohols.
Resumo:
Scavenging of C- and O-centered free radicals is mandatory in processing stabilization of polypropylene. Phenolic antioxidants act principally as O-radical scavengers only. Aromatic amines, N,N'-disubstituted 1,4-phenylenediamines (PD) and 4,4'disubstituted diphenylamines (DPA), scavenge both C- and O-centered radicals and have consequently a broader activity spectrum. PD cannot be used, however, in polypropylene because of formation of strongly discoloring and staining sacrificial transformation products. Such products formed from DPA have even more discoloring properties. A good processing stability and acceptable extent of discoloration can be achieved by blends of phenols with 4,4'-di-tert.octyl DPA. The effect is considered as a beneficial cooperation between the two chain-breaking antioxidants involving interactions with amine-based transformation products.
Resumo:
A Ni-Mg-Al-Ca catalyst was prepared by a co-precipitation method for hydrogen production from polymeric materials. The prepared catalyst was designed for both the steam cracking of hydrocarbons and for the in situ absorption of CO2 via enhancement of the water-gas shift reaction. The influence of Ca content in the catalyst and catalyst calcination temperature in relation to the pyrolysis-gasification of a wood sawdust/polypropylene mixture was investigated. The highest hydrogen yield of 39.6molH2/g Ni with H2/CO ratio of 1.90 was obtained in the presence of the Ca containing catalyst of molar ratio Ni:Mg:Al:Ca=1:1:1:4, calcined at 500°C. In addition, thermogravimetric and morphology analyses of the reacted catalysts revealed that Ca introduction into the Ni-Mg-Al catalyst prevented the deposition of filamentous carbon on the catalyst surface. Furthermore, all metals were well dispersed in the catalyst after the pyrolysis-gasification process with 20-30nm of NiO sized particles observed after the gasification without significant aggregation.
Resumo:
Here we report on a potential catalytic process for efficient clean-up of plastic pollution in waters, such as the Great Pacific Garbage Patch (CPGP). Detailed catalytic mechanisms of RuO2 during supercritical water gasification of common polyolefin plastics including low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene (PP) and polystyrene (PP), have been investigated in a batch reactor at 450 °C, 60 min. All four plastics gave very high carbon gasification efficiencies (CGE) and hydrogen gasification efficiencies (HGE). Methane was the highest gas component, with a yield of up to 37 mol kg−1LDPE using the 20 wt% RuO2 catalyst. Evaluation of the gas yields, CGE and HGE revealed that the conversion of PS involved thermal degradation, steam reforming and methanation; whereas hydrogenolysis was a possible additional mechanism during the conversion of aliphatic plastics. The process has the benefits of producing a clean-pressurized methane-rich fuel gas as well as cleaning up hydrocarbons-polluted waters.
Resumo:
Several ester derivatives of rosmarinic acid (rosmarinates) were synthesised, characterised (1D and 2D NMR, UV and FTIR spectroscopy) and tested for their potential use as antioxidants derived from a renewable natural resource. The intrinsic free radical scavenging activity of the rosmarinates was assessed, initially using a modified DPPH (2, 2-diphenyl-1-picrylhydrazyl radical) method, and found to be higher than that of commercial synthetic hindered phenol antioxidants Irganox 1076 and Irganox 1010. The thermal stabilising performance of the rosmarinates in polyethylene (PE) and polypropylene (PP) was subsequently examined and compared to that of samples prepared similarly but in the presence of Irganox 1076 (in PE) and Irganox 1010 (in PP) which are typically used for polyolefin stabilisation in industrial practice. The melt stability and the long-term thermo-oxidative stability (LTTS) of processed polymers containing the antioxidants were assessed by measuring the melt flow index (MFI), melt viscosity, oxidation induction time (OIT) and long-term (accelerated) thermal ageing performance. The results show that both the melt and the thermo-oxidative stabilisation afforded by the rosmarinates, and in particular the stearyl derivative, in both PE and PP, are superior to those of Irganox 1076 and Irganox 1010, hence their potential as effective sustainable bio-based antioxidants for polymers. The rosmarinic acid used for the synthesis of the rosmarinates esters in this study was obtained from commercial rosemary extracts (AquaROX80). Furthermore, a large number of different strains of UK-grown rosemary plants (Rosmarinum officinalis) were also extracted and analysed in order to examine their antioxidant content. It was found that the carnosic and the rosmarinic acids, and to a much lesser extent the carnosol, constituted the main antioxidant components of the UK-plants, with the two acids being present at a ratio of 3:1, respectively.
Resumo:
A thermogravimetric methodology was developed to investigate and semi-quantify the extent of synergistic effects during pyrolysis and combustion of municipal solid waste (MSW). Results from TGA-MS were used to compare the pyrolysis and combustion characteristics of single municipal solid waste components (polyvinyl chloride (PVC), polypropylene (PP), polystyrene (PS), branches (BR), leaves (LV), grass (GR), packaging paper (PK), hygienic paper (HP) and cardboard (CB)) and a mixture (MX) of PP, BR and CB. Samples were heated under dynamic conditions at 20°C/min from 25°C to 1000°C with the continuous record of their main evolved fragments. Synergistic effects were evaluated by comparing experimental and calculated weight losses and relative areas of MS peaks. Pyrolysis of the mixture happened in two stages, with the release of H2, CH4, H2O, CO and CO2 between 200 and 415°C and the release of CH4, CxHy, CO and CO2 between 415 and 525°C. Negative synergistic effect in the 1st stage was attributed to the presence of PP where the release of hydrocarbons and CO2 from BR and CB was inhibited, whereas positive synergistic effects were observed during the 2nd degradation stage. In a second part of the study, synergistic effects were related to the dependency of the effective activation energy (Eα) versus the conversion (α). Higher Eαs were obtained for MX during its 1st stage of pyrolysis and lower Eαs for the 2nd stage when compared to the individual components. On the other hand, mostly positive synergistic effects were observed during the combustion of the same mixture, for which lower Eαs were recorded.
Resumo:
Current artificial heart valves are classified as mechanical and bioprosthetic. An appealing pathway that promises to overcome the shortcomings of commercially available heart valves is offered by the interdisciplinary approach of cardiovascular tissue engineering. However, the mechanical properties of the Tissue Engineering Heart Valves (TEHV) are limited and generally fail in the long-term use. To meet this performance challenge novel biodegradable triblock copolymer poly(ethylene oxide)-polypropylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO or F108) crosslinked to Silk Fibroin (F108-SilkC) to be used as tri-leaflet heart valve material was investigated. ^ Synthesis of ten polymers with varying concentration and thickness (55 µm, 75 µm and 100 µm) was achieved via a covalent crosslinking scheme using bifunctional polyethylene glycol diglycidyl ether (PEGDE). Static and fatigue testing were used to assess mechanical properties of films, and hydrodynamic testing was performed to determine performance under a simulated left ventricular flow regime. The crosslinked copolymer (F108-Silk C) showed greater flexibility and resilience, but inferior ultimate tensile strength, by increasing concentration of PEGDE. Concentration molar ratio of 80:1 (F108: Silk) and thickness of 75 µm showed longer fatigue life for both tension-tension and bending fatigue tests. Four valves out of twelve designed satisfactorily complied with minimum performance requirement ISO 5840, 2005. ^ In conclusion, it was demonstrated that the applicability of a degradable polymer in conjugation with silk fibroin for tissue engineering cardiovascular use, specifically for aortic valve leaflet design, met the performance demands. Thinner thicknesses (t<75 µm) in conjunction with stiffness lower than 320 MPa (80:1, F108: Silk) are essential for the correct functionality of proposed heart valve biomaterial F108-SilkC. Fatigue tests were demonstrated to be a useful tool to characterize biomaterials that undergo cyclic loading. ^
Resumo:
Synthetic tri-leaflet heart valves generally fail in the long-term use (more than 10 years). Tearing and calcification of the leaflets usually cause failure of these valves as a consequence of high tensile and bending stresses borne on the material. The primary purpose of this study was to explore the possibilities of a new polymer composite to be used as synthetic tri-leaflet heart valve material. This composite was comprised of polystyrene-polyisobutylene-polystyrene (Quatromer), a proprietary polymer, embedded with continuous polypropylene (PP) fibers. Quatromer had been found to be less likely to degrade in vivo than polyurethane. Moreover, it was postulated that a decrease in tears and perforations might result from fiber-reinforced leaflets reducing high stresses on the leaflets. The static and dynamic mechanical properties of the Quatromer/PP composite were compared with those of an implant-approved polyurethane (PU) for cardiovascular applications. Results show that the reinforcement of Quatromer with PP fibers improves both its static and dynamic properties as compared to the PU. Hence, this composite has the potential to be a more suitable material for synthetic tri-leaflet heart valves.
Resumo:
A polyhydroxybutyrate (PHB) producing cyanobacteria was converted through hydrothermal liquefaction (HTL) into propylene and a bio-oil suitable for advanced biofuel production. HTL of model compounds demonstrated that in contrast to proteins and carbohydrates, no synergistic effects were detected when converting PHB in the presence of algae. Subsequently, Synechocystis cf. salina, which had accumulated 7.5wt% PHB was converted via HTL (15% dry weight loading, 340°C). The reaction gave an overall propylene yield of 2.6%, higher than that obtained from the model compounds, in addition to a bio-oil with a low nitrogen content of 4.6%. No propylene was recovered from the alternative non-PHB producing cyanobacterial strains screened, suggesting that PHB is the source of propylene. PHB producing microorganisms could therefore be used as a feedstock for a biorefinery to produce polypropylene and advanced biofuels, with the level of propylene being proportional to the accumulated amount of PHB.
Resumo:
A polyhydroxybutyrate (PHB) producing cyanobacteria was converted through hydrothermal liquefaction (HTL) into propylene and a bio-oil suitable for advanced biofuel production. HTL of model compounds demonstrated that in contrast to proteins and carbohydrates, no synergistic effects were detected when converting PHB in the presence of algae. Subsequently, Synechocystis cf. salina, which had accumulated 7.5wt% PHB was converted via HTL (15% dry weight loading, 340°C). The reaction gave an overall propylene yield of 2.6%, higher than that obtained from the model compounds, in addition to a bio-oil with a low nitrogen content of 4.6%. No propylene was recovered from the alternative non-PHB producing cyanobacterial strains screened, suggesting that PHB is the source of propylene. PHB producing microorganisms could therefore be used as a feedstock for a biorefinery to produce polypropylene and advanced biofuels, with the level of propylene being proportional to the accumulated amount of PHB.
Resumo:
FAPESP:95/56510