991 resultados para INTERIOR ARCHITECTURE
Resumo:
This paper advances the proposition that in many electronic products, the partitioning scheme adopted and the interconnection system used to interconnect the sub-assemblies or components are intimately related to the economic benefits, and hence the attractiveness, of reuse of these items. An architecture has been developed in which the residual values of the connectors, components and sub-assemblies are maximized, and opportunities for take-back and reuse of redundant items are greatly enhanced. The system described also offers significant manufacturing cost benefits in terms of ease of assembly, compactness and robustness.
Resumo:
This paper proposes a method for extracting reliable architectural characteristics from complex porous structures using micro-computed tomography (μCT) images. The work focuses on a highly porous material composed of a network of fibres bonded together. The segmentation process, allowing separation of the fibres from the remainder of the image, is the most critical step in constructing an accurate representation of the network architecture. Segmentation methods, based on local and global thresholding, were investigated and evaluated by a quantitative comparison of the architectural parameters they yielded, such as the fibre orientation and segment length (sections between joints) distributions and the number of inter-fibre crossings. To improve segmentation accuracy, a deconvolution algorithm was proposed to restore the original images. The efficacy of the proposed method was verified by comparing μCT network architectural characteristics with those obtained using high resolution CT scans (nanoCT). The results indicate that this approach resolves the architecture of these complex networks and produces results approaching the quality of nanoCT scans. The extracted architectural parameters were used in conjunction with an affine analytical model to predict the axial and transverse stiffnesses of the fibre network. Transverse stiffness predictions were compared with experimentally measured values obtained by vibration testing. © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Bats (Chiroptera) are the second-most abundant mammalian order in the world, occupying a diverse range of habitats and exhibiting many different life history traits. In order to contribute to this highly underrepresented group we describe the sleep architecture of two species of frugivorous bat, the greater short-nosed fruit bat (Cynopterus sphinx) and the lesser dawn fruit bat (Eonycteris spelaea). Electroencephalogram (EEG) and electromyogram (EMG) data were recorded from multiple individuals (>= 5) by telemetry over a 72-h period in a laboratory setting with light/dark cycles equivalent to those found in the wild. Our results show that over a 24-h period both species spent more time asleep than awake (mean 15 h), less than previous reported for Chiroptera (20 h). C sphinx spent significantly more of its non-rapid eye movement sleep (NREM) and rapid eye movement sleep (REM) quotas during the light phase, while E. spelaea divided its sleep-wake architecture equally between both light and dark phases. Comparing the sleep patterns of the two species found that C. sphinx had significantly fewer NREM and REM episodes than E. spelaea but each episode lasted for a significantly longer period of time. Potential hypotheses to explain the differences in the sleep architecture of C. sphinx with E. spelaea, including risk of predation and social interaction are discussed. (C) 2010 Published by Elsevier B.V.