878 resultados para INSPIRATORY MUSCLE TRAINING
Resumo:
The spatial and temporal association of muscle-specific tropomyosin gene expression, and myofibril assembly and degradation during metamorphosis is analyzed in the gastropod mollusc. Haliotis rufescens. Metamorphosis of tile planktonic larva to the benthic juvenile includes rearrangement and atrophy of specific larval muscles, and biogenesis of the new juvenile muscle system. The major muscle of the larva - the larval retractor muscle - reorganizes at metamorphosis, with two suites of cells having different fates. The ventral cells degenerate, while the dorsal cells become part of the developing juvenile mantle musculature. Prior to these changes in myofibrillar structure, tropomyosin mRNA prevalence declines until undetectable in the ventral cells, while increasing markedly in the dorsal cells. In the foot muscle and right shell muscle, tropomyosin mRNA levels remain relatively stable, even trough myofibril content increases. In a population of median mesoderm cells destined to form de novo the major muscle of the juvenile and adult (the columellar muscle), tropomyosin expression is initiated at 45 h after induction of metamorphosis. Myofibrillar filamentous actin is not detected in these cells until about 7 days later. Given that patterns of tropomyosin mRNA accumulation in relation to myofibril assembly and disassembly differ significantly among the four major muscle systems examined, we suggest that different regulatory mechanisms, probably operating at both transcriptional and post-transcriptional levels, control the biogenesis and atrophy of different larval and postlarval muscles at metamorphosis.
Resumo:
Numerous studies investigating the possible role of altered Ca2+ homeostasis in hypertension have compared resting and agonist-stimulated intracellular free Ca2+ ([Ca2+](i)) in cultured aortic smooth muscle cells from spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats. However, such studies have not given consistent results. Differences in the method used to load cells with the Ca2+-sensitive indicator fura-2 have been investigated here as a possible source of variability between studies. We also describe the adaptation of a fluorescence technique for the assessment of basal Ca2+ permeability in SHR and WKY through the measurement of Mn2+ influx. The results are consistent with the hypothesis that basal Ca2+ influx is elevated in cultured aortic smooth muscle cells from SHR compared to those from WKY. However, this was not reflected as a significant difference between the two strains in basal or angiotensin II (200 nmol/L)stimulated [Ca2+](i). Furthermore, this result was not dependent on the protocol used to load cells with fura-2. Hence, measurement of bulk [Ca2+](i) does not appear to be the most sensitive parameter for altered Ca2+ homeostasis in SHR. Other compartments of the cell may better reflect altered Ca2+ fluxes in hypertension and are discussed in this work.
Resumo:
Objective: Physical and psychological incapacity, including fear of falling is related to decreased satisfaction with life in osteoporosis (OP). The impact of a balance exercise program on improving the quality of life is not well established. We have, therefore, investigated the effect of 12-month Balance Training Program in quality of life, functional balance and falls in elderly OP women. Methods: Sixty consecutive women with senile OP were randomized into a Balance Training Group (BT) of 30 patients and no intervention control group (CG) of 30 patients. The BT program included techniques to improve balance over a period of 12 months (1 h exercise session/week and home-based exercises). The quality of life was evaluated before and at the end of the trial using the Osteoporosis Assessment Questionnaire (OPAQ), functional balance was evaluated by Berg Balance Scale (BBS). Falls in the preceding year were noted and compared to the period of study. Results: The comparison of OPAQ variations (INITIAL-FINAL) revealed a significant improvement in quality of life in all parameters for BT compared to CG: well-being (1.61 +/- 1.44 vs. -1.46 +/- 1.32, p < 0001), physical function (1.30 +/- 1.33 vs. -0.36 +/- 0.82, p < 0.001), psychological status (1.58 +/- 1.36 vs. -1.02 +/- 0.83, p < 0.001), symptoms (2.76 +/- 1.96 vs. -0.63 +/- 0.87, p < 0.001), social interaction (1.01 +/- 1.51 vs. 0.35 +/- 1.08, p < 0.001). Of note, this overall benefit was paralleled by an improvement of BBS (-5.5 +/- 5.67 vs. +0.5 +/- 4.88 p < 0.001) and a reduction of falls in 50% in BT group vs. 26.6% for the CG (RR: 1.88, p < 0.025). Conclusion: The long-term Balance Training Program of OP women provides a striking overall health quality of life improvement in parallel with improving functional balance and reduced falls. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
NEVES JR., M., B. GUALANO, H. ROSCHEL, R. FULLER, F. B. BENATTI, A. L. DE SA PINTO, F. R. LIMA, R. M. PEREIRA, A. H. LANCHA JR., E. BONFA. Beneficial Effect of Creatine Supplementation in Knee Osteoarthritis. Med. Sci. Sports Exerc., Vol. 43, No. 8, pp. 1538-1543, 2011. Introduction: The aim of this study was to investigate the efficacy of creatine (CR) supplementation combined with strengthening exercises in knee osteoarthritis (OA). Methods: A randomized, double-blind, placebo-controlled trial was performed. Postmenopausal women with knee OA were allocated to receive either CR (20 g.d(-1) for 1 wk and 5 g.d(-1) thereafter) or placebo (PL) and were enrolled in a lower limb resistance training program. They were assessed at baseline (PRE) and after 12 wk (POST). The primary outcome was the physical function as measured by the timed-stands test. Secondary outcomes included lean mass, quality of life, pain, stiffness, and muscle strength. Results: Physical function was significantly improved only in the CR group (P = 0.006). In addition, a significant between-group difference was observed (CR: PRE = 15.7 +/- 1.4, POST = 18.1 +/- 1.8; PL: PRE = 15.0 +/- 1.8, POST = 15.2 +/- 1.2; P = 0.004). The CR group also presented improvements in physical function and stiffness subscales as evaluated by the Western Ontario and McMaster Universities Osteoarthritis Index (P = 0.005 and P = 0.024, respectively), whereas the PL group did not show any significant changes in these parameters (P > 0.05). In addition, only the CR group presented a significant improvement in lower limb lean mass (P = 0.04) as well as in quality of life (P = 0.01). Both CR and PL groups demonstrated significant reductions in pain (P G 0.05). Similarly, a main effect for time revealed an increase in leg-press one-repetition maximum (P = 0.005) with no significant differences between groups (P = 0.81). Conclusions: CR supplementation improves physical function, lower limb lean mass, and quality of life in postmenopausal women with knee OA undergoing strengthening exercises.
Resumo:
This study evaluated the effects of a micro cycle of overload training (1st-8th day) on metabolic and hormonal responses in male runners with or without carbohydrate supplementation and investigated the cumulative effects of this period on a session of intermittent high-intensity running and maximum-performance-test (9th day). The participants were 24 male runners divided into two groups, receiving 61% of their energy intake as CHO (carbohydrate-group) and 54% in the control-group (CON). The testosterone was higher for the CHO than the CON group after the overload training (694.0 +/- A 54.6 vs. CON 610.8 +/- A 47.9 pmol/l). On the ninth day participants performed 10 x 800 m at mean 3 km velocity. An all-out 1000 m running was performed before and after the 10 x 800 m. Before, during, and after this protocol, the runners received solution containing CHO or the CON equivalent. The performance on 800 m series did not differ in either group between the first and last series of 800 m, but for the all-out 1000 m test the performance decrement was lower for CHO group (5.3 +/- A 1.0 vs. 10.6 +/- A 1.3%). The cortisol concentrations were lower in the CHO group in relation to CON group (22.4 +/- A 0.9 vs. 27.6 +/- A 1.4 pmol/l) and the IGF1/IGFBP3 ratio increased 12.7% in the CHO group. During recovery, blood glucose concentrations remained higher in the CHO group in comparison with the CON group. It was concluded that CHO supplementation possibly attenuated the suppression of the hypothalamic-pituitary-gonadal axis and resulted in less catabolic stress, and thus improved running performance.
Resumo:
The present study investigated the relationship between plasma potassium ion concentration ([K+]) and skeletal muscle torque during three different 15-min recovery periods after fatigue induced by four 30-s sprints. Four males and one female completed the multiple sprint exercise on three separate days; recovery was passive, i.e. no cycling exercise (PRec), active cycling at 30% peak oxygen consumption (V) over dot(2peak) (30% Rec) and active cycling at 60% (V) over dot(2peak) (60% Rec). Plasma [K+] was measured from blood sampled from an antecubital vein of subjects at rest and at 0, 3, 5, 10 and 15 min into each recovery. Isokinetic leg strength was measured at rest and at 1, 6, 11 and 16 min during each recovery. Following the exhaustive sprints; [K+] increased significantly from an average mean (SEM) resting value of 3.81 (0.07) mmol.l(-1) to 4.48 (0.19) mmol.l(-1) (P < 0.01). In all recovery conditions, plasma [K+] returned to resting levels within 3 min following the fourth sprint. However, in the two active recovery conditions plasma [K+] increased over the remainder of the recovery periods to 4.36 (0.12) mmol.l(-1) in the 30% Rec condition and 4.62 (0.12) mmol.l(-1) in the 60% Rec condition, the latter being significantly higher than the former (P < 0.01). The maximum torque measured following the sprints decreased significantly, on average, to 61.1 (8.36)% of peak levels (P < 0.01). After 15 min of recovery, maximum torque was highest in the 30% Rec condition at 92.13 (3.06)% of peak levels (P < 0.01), compared to 85.23 (3.64)% and 85.71 (0.82)% for the PRec and 60% Rec conditions, respectively. In contrast to the significant differences in plasma [K+] across all three recovery conditions, muscle torque recovery was significantly different in only the 30% Rec condition. In summary, recovery of peak levels of muscle torque following fatiguing exercise does not appear to follow changes in plasma [K+].
Resumo:
Exercise training has an important role in the prevention and treatment of hypertension, but its effects on the early metabolic and hemodynamic abnormalities observed in normotensive offspring of hypertensive parents (FH+) have not been studied. We compared high-intensity interval (aerobic interval training, AIT) and moderate-intensity continuous exercise training (CMT) with regard to hemodynamic, metabolic and hormonal variables in FH+ subjects. Forty-four healthy FH+ women (25.0+/-4.4 years) randomized to control (ConFH+) or to a three times per week equal-volume AIT (80-90% of VO(2MAX)) or CMT (50-60% of VO(2MAX)) regimen, and 15 healthy women with normotensive parents (ConFH-; 25.3+/-3.1 years) had their hemodynamic, metabolic and hormonal variables analyzed at baseline and after 16 weeks of follow-up. Ambulatorial blood pressure (ABP), glucose and cholesterol levels were similar among all groups, but the FH+ groups showed higher insulin, insulin sensitivity, carotid-femoral pulse wave velocity (PWV), norepinephrine and endothelin-1 (ET-1) levels and lower nitrite/ nitrate (NOx) levels than ConFH- subjects. AIT and CMT were equally effective in improving ABP (P<0.05), insulin and insulin sensitivity (P<0.001); however, AIT was superior in improving cardiorespiratory fitness (15 vs. 8%; P<0.05), PWV (P<0.01), and BP, norepinephrine, ET-1 and NOx response to exercise (P<0.05). Exercise intensity was an important factor in improving cardiorespiratory fitness and reversing hemodynamic, metabolic and hormonal alterations involved in the pathophysiology of hypertension. These findings may have important implications for the exercise training programs used for the prevention of inherited hypertensive disorder. Hypertension Research (2010) 33, 836-843; doi:10.1038/hr.2010.72; published online 7 May 2010
Resumo:
Background: Forearm blood flow responses during mental stress are greater in individuals homozygous for the Glu27 allele. A high-fat meal is associated with impaired endothelium-dependent dilatation. We investigated the impact of high-fat ingestion on the muscle vasodilatory responses during mental stress in individuals with the Glu27 allele and those with the Gln27 allele of the beta(2)-adrenoceptor gene. Methods: A total of 162 preselected individuals were genotyped for the Glu27Gln beta(2)-adrenoceptor polymorphism. Twenty-four individuals participated in the study. Fourteen were homozygous for the Gln27 allele (Gln27Gln, 40 +/- 2 years; 64 +/- 2 kg), and 10 were homozygous for the Glu27 allele (Glu27Glu, 40 +/- 3 years; 65 +/- 3 kg). Forearm blood flow was evaluated by venous occlusion plethysmography before and after ingestion of 62 g of fat. Results: The high-fat meal caused no changes in baseline forearm vascular conductance (FVC, 2.2 +/- 0.1 vs. 2.4 +/- 0.2; P = 0.27, respectively), but reduced FVC responses to mental stress (1.5 +/- 0.2 vs. 0.8 +/- 0.2 units; P = 0.04). When volunteers were divided according to their genotypes, baseline FVC was not different between groups (Glu27Glu = 2.4 +/- 0.1 vs. Gln27Gln = 2.1 +/- 0.1 units; P = 0.08), but it was significantly greater in Glu27Glu individuals during mental stress (1.9 +/- 0.4 vs. 1.0 +/- 0.3 units; P = 0.04). High-fat intake eliminated the difference in FVC responses between Glu27Glu and Gln27Gln individuals (FVC, 1.3 +/- 0.4 vs. 1.2 +/- 0.4; P = 0.66, respectively). Conclusion: These findings demonstrate that a high-fat meal impairs muscle vasodilatation responses to mental stress in humans. However, this reduction can be attributed to the presence of the homozygous Glu27 allele of the beta(2)-adrenoceptor gene.
Resumo:
Exercise is an effective intervention for treating hypertension and arterial stiffness, but little is known about which exercise modality is the most effective in reducing arterial stiffness and blood pressure in hypertensive subjects. Our purpose was to evaluate the effect of continuous vs. interval exercise training on arterial stiffness and blood pressure in hypertensive patients. Sixty-five patients with hypertension were randomized to 16 weeks of continuous exercise training (n=26), interval training (n=26) or a sedentary routine (n=13). The training was conducted in two 40-min sessions a week. Assessment of arterial stiffness by carotid-femoral pulse wave velocity (PWV) measurement and 24-h ambulatory blood pressure monitoring (ABPM) were performed before and after the 16 weeks of training. At the end of the study, ABPM blood pressure had declined significantly only in the subjects with higher basal values and was independent of training modality. PWV had declined significantly only after interval training from 9.44 +/- 0.91 to 8.90 +/- 0.96 m s(-1), P=0.009 (continuous from 10.15 +/- 1.66 to 9.98 +/- 1.81 m s(-1), P-ns; control from 10.23 +/- 1.82 to 10.53 +/- 1.97 m s(-1), P-ns). Continuous and interval exercise training were beneficial for blood pressure control, but only interval training reduced arterial stiffness in treated hypertensive subjects. Hypertension Research (2010) 33, 627-632; doi:10.1038/hr.2010.42; published online 9 April 2010
Resumo:
Exercise training has been shown to be effective in improving exercise capacity and quality of life in patients with heart failure and left ventricular (LV) systolic dysfunction. Real-time myocardial contrast echocardiography (RTMCE) is a new technique that allows quantitative analysis of myocardial blood flow (MBF). The aim of this study was to determine the effects of exercise training on MBF in patients with LV dysfunction. We studied 23 patients with LV dysfunction who underwent RTMCE and cardiopulmonary exercise testing at baseline and 4 months after medical treatment (control group, n = 10) or medical treatment plus exercise training (trained group, n = 13). Replenishment velocity (0) and MBF reserves were derived from quantitative RTMCE. The 4-month exercise training consisted of 3 60-minute exercise sessions/week at an intensity corresponding to anaerobic threshold, 10% below the respiratory compensation point. Aerobic exercise training did not change LV diameters, volumes, or ejection fraction. At baseline, no difference was observed in MBF reserve between the control and trained groups (1.89, 1.67 to 1.98, vs 1.81, 1.28 to 2.38, p = 0.38). Four-month exercise training resulted in a significant increase in beta reserve from 1.72 (1.45 to 1.48) to 2.20 (1.69 to 2.77, p <0.001) and an MBF reserve from 1.81 (1.28 to 2.38) to 3.05 (2.07 to 3.93, p <0.001). In the control group, 13 reserve decreased from 1.51 (1.10 to 1.85) to 1.46 (1.14 to 2.33, p = 0.03) and MBF reserve from 1.89 (1.67 to 1.98) to 1.55 (1.11 to 2.27, p <0.001). Peak oxygen consumption increased by 13.8% after 4 months of exercise training and decreased by 1.9% in the control group. In conclusion, exercise training resulted in significant improvement of MBF reserve in patients with heart failure and LV dysfunction. (C) 2010 Elsevier Inc. All rights reserved. (Am J Cardiol 2010;105:243-248)
Resumo:
Aerobic exercise training leads to a physiological, nonpathological left ventricular hypertrophy; however, the underlying biochemical and molecular mechanisms of physiological left ventricular hypertrophy are unknown. The role of microRNAs regulating the classic and the novel cardiac renin-angiotensin (Ang) system was studied in trained rats assigned to 3 groups: (1) sedentary; (2) swimming trained with protocol 1 (T1, moderate-volume training); and (3) protocol 2 (T2, high-volume training). Cardiac Ang I levels, Ang-converting enzyme (ACE) activity, and protein expression, as well as Ang II levels, were lower in T1 and T2; however, Ang II type 1 receptor mRNA levels (69% in T1 and 99% in T2) and protein expression (240% in T1 and 300% in T2) increased after training. Ang II type 2 receptor mRNA levels (220%) and protein expression (332%) were shown to be increased in T2. In addition, T1 and T2 were shown to increase ACE2 activity and protein expression and Ang (1-7) levels in the heart. Exercise increased microRNA-27a and 27b, targeting ACE and decreasing microRNA-143 targeting ACE2 in the heart. Left ventricular hypertrophy induced by aerobic training involves microRNA regulation and an increase in cardiac Ang II type 1 receptor without the participation of Ang II. Parallel to this, an increase in ACE2, Ang (1-7), and Ang II type 2 receptor in the heart by exercise suggests that this nonclassic cardiac renin-angiotensin system counteracts the classic cardiac renin-angiotensin system. These findings are consistent with a model in which exercise may induce left ventricular hypertrophy, at least in part, altering the expression of specific microRNAs targeting renin-angiotensin system genes. Together these effects might provide the additional aerobic capacity required by the exercised heart. (Hypertension. 2011;58:182-189.).
Resumo:
In recent years, beta-blocker therapy has become a primary pharmacologic intervention in patients with heart failure by blocking the sympathetic activity. To compare the exercise training`s sympathetic blockade in healthy subjects (athletes) and the carvedilol`s sympathetic blockade in sedentary heart failure patients by the evaluation of the heart rate dynamic during an exercise test. A total of 26 optimized and 49 nonoptimized heart failure patients in a stable condition (for, at least, 3 months), 15 healthy athletes and 17 sedentary healthy subjects were recruited to perform a cardiopulmonary exercise test. The heart rate dynamic (rest, reserve, peak and the peak heart rate in relation to the maximum predicted for age) was analyzed and compared between the four groups. The heart rate reserve was the same between optimized (48 +/- 15) and nonoptimized (49 +/- 18) heart failure patients (P < 0.0001). The athletes (188 +/- 9) showed a larger heart rate reserve compared to sedentary healthy subjects (92 +/- 10, P < 0.0001). Athletes and healthy sedentary reached the maximum age-predicted heart ratefor their age, but none of the heart failure patients did. The carvedilol`s sympathetic blockade occurred during the rest and during the peak effort in the same proportion, but the exercise training`s sympathetic blockade in healthy subjects occurred mainly in the rest.
Resumo:
Background: The progression of heart failure in Chagas` disease has been explained by remodeling, leading to neurohumoral activation, or by the direct parasite damage to parasympathetic neurons during acute phase, leading to early sympathetic activation and progressive heart failure. To help distinguish between these hypotheses we studied muscle sympathetic nerve activity (MSNA) at rest and during handgrip exercise (30% of maximal voluntary contraction) in patients with Chagas` disease and normal ejection fraction vs. patients with heart failure. Methods: A consecutive study of 72 eligible out-patients/subjects was conducted between July 1998 and November 2004. The participants were classified in three advanced heart failure groups (New York Heart Association Functional Classes II-III): Chagas` disease (n-15), ischemic (n=15) and idiopathic cardiomyopathy (n-15). Twelve Chagas` disease patients without heart failure and normal ejection fraction, and 15 normal controls were also studied. MSNA was recorded directly from the peroneal nerve by microneurography technique. Results: MSNA was greater in heart failure patients when compared with Chagas` disease patients without heart failure (51 +/- 3 vs. 20 +/- 2 bursts/min P=0.0001). MSNA in Chagas` patients with normal ejection fraction and normal controls was not different. During exercise, MSNA was similar in all 3 heart failure groups. And, was lower in the Chagas` patients with normal ejection fraction than in patients with Chagas` disease and heart failure (28 +/- 1 vs. 63 +/- 5 bursts/min, respectively). Conclusion: MSNA is not elevated in patients with Chagas` disease with normal ejection fraction. These findings support the concept of remodeling and neurohumoral activation as a common pathway following significant cardiac injury. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Background: Previous studies have associated neurohumoral excitation, as estimated by plasma norepinephrine levels, with increased mortality in heart failure. However, the prognostic value of neurovascular interplay in heart failure (HF) is unknown. We tested the hypothesis that the muscle sympathetic nerve activity (MSNA) and forearm blood flow would predict mortality in chronic heart failure patients. Methods: One hundred and twenty two heart failure patients, NYHA II-IV, age 50 +/- 1 ys, LVEF 33 +/- 1%, and LVDD 7.1 +/- 0.2 mm, were followed up for one year. MSNA was directly measured from the peroneal nerve by microneurography. Forearm blood flow was obtained by venous occlusion plethysmography. The variables were analyzed by using univariate, stepwise multivariate Cox proportional hazards analysis, and Kaplan-Meier analysis. Results: After one year, 34 pts died from cardiac death. The univariate analysis showed that MSNA, forearm blood flow, LVDD, LVEF, and heart rate were significant predictors of mortality. The multivariate analysis showed that only MSNA (P = 0.001) and forearm blood flow (P = 0.003) were significant independent predictors of mortality. On the basis of median levels of MSNA, survival rate was significantly lower in pts with >49 bursts/min. Similarly, survival rate was significantly lower in pts with forearm blood flow <1.87 ml/min/100 ml (P = 0.002). Conclusion: MSNA and forearm blood flow predict mortality rate in patients with heart failure. It remains unknown whether therapies that specifically target these abnormalities will improve survival in heart failure. (C) 2008 Elsevier Ireland Ltd. All rights reserved.