963 resultados para IMPROVES CARDIAC-FUNCTION
Resumo:
We present a model for mechanical activation of the cardiac tissue depending on the evolution of the transmembrane electrical potential and certain gating/ionic variables that are available in most of electrophysiological descriptions of the cardiac membrane. The basic idea consists in adding to the chosen ionic model one ordinary differential equation for the kinetics of the mechanical activation function. A relevant example illustrates the desired properties of the proposed model, such as delayed muscle contraction and correct magnitude of the muscle fibers' shortening.
Resumo:
BACKGROUND: Recent data suggest that beta-blockers can be beneficial in subgroups of patients with chronic heart failure (CHF). For metoprolol and carvedilol, an increase in ejection fraction has been shown and favorable effects on the myocardial remodeling process have been reported in some studies. We examined the effects of bisoprolol fumarate on exercise capacity and left ventricular volume with magnetic resonance imaging (MRI) and applied a novel high-resolution MRI tagging technique to determine myocardial rotation and relaxation velocity. METHODS: Twenty-eight patients (mean age, 57 +/- 11 years; mean ejection fraction, 26 +/- 6%) were randomized to bisoprolol fumarate (n = 13) or to placebo therapy (n = 15). The dosage of the drugs was titrated to match that of the the Cardiac Insufficiency Bisoprolol Study protocol. Hemodynamic and gas exchange responses to exercise, MRI measurements of left ventricular end-systolic and end-diastolic volumes and ejection fraction, and left ventricular rotation and relaxation velocities were measured before the administration of the drug and 6 and 12 months later. RESULTS: After 1 year, heart rate was reduced in the bisoprolol fumarate group both at rest (81 +/- 12 before therapy versus 61 +/- 11 after therapy; P <.01) and peak exercise (144 +/- 20 before therapy versus 127 +/- 17 after therapy; P <.01), which indicated a reduction in sympathetic drive. No differences were observed in heart rate responses in the placebo group. No differences were observed within or between groups in peak oxygen uptake, although work rate achieved was higher (117.9 +/- 36 watts versus 146.1 +/- 33 watts; P <.05) and exercise time tended to be higher (9.1 +/- 1.7 minutes versus 11.4 +/- 2.8 minutes; P =.06) in the bisoprolol fumarate group. A trend for a reduction in left ventricular end-diastolic volume (-54 mL) and left ventricular end-systolic volume (-62 mL) in the bisoprolol fumarate group occurred after 1 year. Ejection fraction was higher in the bisoprolol fumarate group (25.0 +/- 7 versus 36.2 +/- 9%; P <.05), and the placebo group remained unchanged. Most changes in volume and ejection fraction occurred during the latter 6 months of treatment. With myocardial tagging, insignificant reductions in left ventricular rotation velocity were observed in both groups, whereas relaxation velocity was reduced only after bisoprolol fumarate therapy (by 39%; P <.05). CONCLUSION: One year of bisoprolol fumarate therapy resulted in an improvement in exercise capacity, showed trends for reductions in end-diastolic and end-systolic volumes, increased ejection fraction, and significantly reduced relaxation velocity. Although these results generally confirm the beneficial effects of beta-blockade in patients with chronic heart failure, they show differential effects on systolic and diastolic function.
Resumo:
PURPOSE: To implement real-time myocardial strain-encoding (SENC) imaging in combination with tracking the tissue displacement in the through-plane direction. MATERIALS AND METHODS: SENC imaging was combined with the slice-following technique by implementing three-dimensional (3D) selective excitation. Certain adjustments were implemented to reduce scan time to one heartbeat. A total of 10 volunteers and five pigs were scanned on a 3T MRI scanner. Spatial modulation of magnetization (SPAMM)-tagged images were acquired on planes orthogonal to the SENC planes for comparison. Myocardial infarction (MI) was induced in two pigs and the resulting SENC images were compared to standard delayed-enhancement (DE) images. RESULTS: The strain values computed from SENC imaging with slice-following showed significant difference from those acquired without slice-following, especially during systole (P < 0.01). The strain curves computed from the SENC images with and without slice-following were similar to those computed from the orthogonal SPAMM images, with and without, respectively, tracking the tag line displacement in the strain direction. The resulting SENC images showed good agreement with the DE images in identifying MI in infarcted pigs. CONCLUSION: Correction of through-plane motion in real-time cardiac functional imaging is feasible using slice-following. The strain measurements are more accurate than conventional SENC measurements in humans and animals, as validated with conventional MRI tagging.
Resumo:
Background and Aims: Granulocyte-macrophage colonystimulating factor (GM-CSF), a cytokine modulating the number and function of innate immune cells, has been shown to provide symptomatic benefit in some patients with Crohn's disease (CD). Since, it becomes widely appreciated that a timely and spatially regulated action of innate immune cells is critical for tissue regeneration, we tested whether GM-CSF therapy may favours intestinal mucosal repair in the acute mouse model of dextran sulfate sodium (DSS)-induced colitis. Methods: Mice treated with GM-CSF or saline were exposed for 7 days to DSS to induce colitis. On day 5, 7 and 10, mice were subjected to colonoscopy or sacrificed for evaluation of inflammatory reaction and mucosal healing. Results: GM-CSF therapy prevented body weight loss, diarrhea, dampened inflammatory reactions and ameliorated mucosal damages. Mucosal repair improvement in GM-CSF-treated mice was observed from day 7 on both by colonoscopy (ulceration score 1.2}0.3 (GM-CSF-treated) vs 3.1}0.5 (untreated), p = 0.01) and histological analysis (percentage of reepithelialized ulcers 55%}4% (GM-CSF-treated) vs 18%}13% (untreated), p = 0.01). GM-CSF therapy can still improve the colitis when hematopoietic, but not non-hematopoietic cells, are responsive to GM-CSF, as shown in WT→GM-CSFRKO chimeras. Lastly, we observed that GM-CSF-induced promotion of wound healing is associated with a modification of the cellular composition of DSS-induced colonic inflammatory infiltrate, characterized by the reduction of neutrophil numbers and early accumulation of CD11b+Gr1lo myeloid cells. Conclusion: Our study shows that GM-CSF therapy accelerates the complex program leading to tissue repair during acute colitis and suggests that GM-CSF promotion of mucosal repair might contribute to the symptomatic benefits of GM-CSF therapy observed in some CD patients.
Resumo:
rejection can lead to loss of function. Histological reading of endomyocardial biopsy remains the "gold standard" for guiding immunosuppression, despite its methodological limitations (sampling error and interobserver variability). The measurement of the T2 relaxation time has been suggested for detection of allograft rejection, on the pathophysiological basis that the T2 relaxation time prolongs with local edema resulting from acute allograft rejection. Using breath-held cardiac magnetic resonance T2 mapping at 1.5 T, Usman et al. (CircCardiovascImaging2012) detected moderate allograft rejection (grade 2R, ISHLT 2004). With modern immunosuppression grade 2R rejection has become a rare event, but the need remains for a technique that permits the discrimination of absent (grade 0R) and mild rejection (grade 1R). We therefore investigated whether an increase of magnetic field strength to 3T and the use of real-time navigator-gated respiration compensation allow for an increase in the sensitivity of T2 relaxation time detection that is necessary to achieve this discrimination. Methods: Eighteen patients received EMB (Tan et al., ArchPatholLabMed2007) and cardiac T2 mapping on the same day. Reading of T2 maps was blinded to the histological results. For final analysis, 3 cases with known 2R rejection at the time of T2 mapping were added, yielding 21 T2 mapping sessions. A respiration-navigator-gated radial gradient-recalled-echo pulse sequence (resolution 1.17 mm2, matrix 2562, trigger time 3 heartbeats, T2 preparation duration TET2 Prep = 60/30/0 ms) was applied to obtain 3 short-axis T2 maps (van Heeswijk et al., JACCCardiovascImaging2012), which were segmented according to AHA guidelines (Cerqueira et al, Circulation2001). The highest segmental T2 values were grouped according to histological rejection grade and differences were analyzed by Student's t-test, except for the non-blinded cases with 2R rejection. The degree of discrimination was determined using the Spearman's ranked correlation test. Results: The high-quality T2 maps allowed for visual differentiation of the rejection degrees (Figure 1), and the correlation of T2 mapping with the histological grade of acute cellular rejection was significant (Spearman's r = 0.56, p = 0.007). The 0R (n = 15) and 1R (n = 3) degrees demonstrated significantly different T2 values (46.9 ± 5.0 and 54.3 ± 3.0 ms, p = 0.02, Figure 2). Cases with 2R rejection showed clear T2 elevation (T2 = 60.3 ± 16.2 ms). Conclusions: This pilot study demonstrates that non-invasive free-breathing cardiac T2 mapping at 3T discriminates between no and mild cardiac allograft rejection. Confirmation of these encouraging results in a larger cohort should consider a study able to show equivalency or superiority of T2 mapping.
Resumo:
RATIONALE:We investigated the impact of canakinumab, a fully human anti-interleukin-1b monoclonal antibody on inflammation and HRQoL in gouty arthritis patients.METHODS: In this 8-week, single-blind, dose-ranging study, patients with acute gouty arthritis flares, unresponsive/intolerant or contraindicated to NSAIDs and/or colchicine were randomized to single subcutaneous canakinumab (10, 25, 50, 90, or 150mg, N5143) or single intramuscular triamcinolone acetonide (TA, 40mg, N557). Patients assessed pain (Likert scale), physicians assessed clinical signs of joint inflammation, and HRQoL was recorded using SF-36.RESULTS: At baseline, 98% patients had moderate-to-extreme pain, 85% had moderate/severe joint swelling, 64-79% had elevated inflammatory markers and HRQoL scores indicated impaired physical function. Percentage of patients with no/mild pain was numerically greater in most canakinumab groups vs. TA, 24-72h post-dose; difference significant for 150mg group at these time-points (P<0.05). Canakinumab 150mg was associated with significantly lower Likert scores for tenderness [OR, 3.2; 95% CI, 1.27-7.89; P50.014] and swelling (OR, 2.7; 95% CI, 1.09-6.50, P50.032) at 72h vs. TA; erythema was not different. Median CRP and SAA levels normalized by 7 days post-dose in most canakinumab groups, but remained elevated in TA. Physical function improved at 7 days postdose in all groups, highest improvement for canakinumab 150mg. SF-36 scores for physical functioning and bodily pain with canakinumab 150mg approached US general population scores by 7 days post-dose and exceeded normal values by 8 weeks post-dose.CONCLUSION: Canakinumab 150mg produced significantly greater and rapid pain-relief and improvements in HRQoL vs. TAin acute gouty arthritis patients.
Resumo:
Buchheit, M, Al Haddad, H, Millet GP, Lepretre, PM, Newton, M, and Ahmaidi, S. Cardiorespiratory and cardiac autonomic responses to 30-15 Intermittent Fitness Test in team sport players. J Strength Cond Res 23(1): xxx-xxx, 2009-The 30-15 Intermittent Fitness Test (30-15IFT) is an attractive alternative to classic continuous incremental field tests for defining a reference velocity for interval training prescription in team sport athletes. The aim of the present study was to compare cardiorespiratory and autonomic responses to 30-15IFT with those observed during a standard continuous test (CT). In 20 team sport players (20.9 +/- 2.2 years), cardiopulmonary parameters were measured during exercise and for 10 minutes after both tests. Final running velocity, peak lactate ([La]peak), and rating of perceived exertion (RPE) were also measured. Parasympathetic function was assessed during the postexercise recovery phase via heart rate (HR) recovery time constant (HRRtau) and HR variability (HRV) vagal-related indices. At exhaustion, no difference was observed in peak oxygen uptake (&OV0312;o2peak), respiratory exchange ratio, HR, or RPE between 30-15IFT and CT. In contrast, 30-15IFT led to significantly higher minute ventilation, [La]peak, and final velocity than CT (p < 0.05 for all parameters). All maximal cardiorespiratory variables observed during both tests were moderately to well correlated (e.g., r = 0.76, p = 0.001 for &OV0312;o2peak). Regarding ventilatory thresholds (VThs), all cardiorespiratory measurements were similar and well correlated between the 2 tests. Parasympathetic function was lower after 30-15IFT than after CT, as indicated by significantly longer HHRtau (81.9 +/- 18.2 vs. 60.5 +/- 19.5 for 30-15IFT and CT, respectively, p < 0.001) and lower HRV vagal-related indices (i.e., the root mean square of successive R-R intervals differences [rMSSD]: 4.1 +/- 2.4 and 7.0 +/- 4.9 milliseconds, p < 0.05). In conclusion, the 30-15IFT is accurate for assessing VThs and &OV0312;o2peak, but it alters postexercise parasympathetic function more than a continuous incremental protocol.
Resumo:
Doxorubicin (DOX) is a widely used, potent chemotherapeutic agent; however, its clinical application is limited because of its dose-dependent cardiotoxicity. DOX's cardiotoxicity involves increased oxidative/nitrative stress, impaired mitochondrial function in cardiomyocytes/endothelial cells and cell death. Cannabidiol (CBD) is a nonpsychotropic constituent of marijuana, which is well tolerated in humans, with antioxidant, antiinflammatory and recently discovered antitumor properties. We aimed to explore the effects of CBD in a well-established mouse model of DOX-induced cardiomyopathy. DOX-induced cardiomyopathy was characterized by increased myocardial injury (elevated serum creatine kinase and lactate dehydrogenase levels), myocardial oxidative and nitrative stress (decreased total glutathione content and glutathione peroxidase 1 activity, increased lipid peroxidation, 3-nitrotyrosine formation and expression of inducible nitric oxide synthase mRNA), myocardial cell death (apoptotic and poly[ADP]-ribose polymerase 1 [PARP]-dependent) and cardiac dysfunction (decline in ejection fraction and left ventricular fractional shortening). DOX also impaired myocardial mitochondrial biogenesis (decreased mitochondrial copy number, mRNA expression of peroxisome proliferator-activated receptor γ coactivator 1-alpha, peroxisome proliferator-activated receptor alpha, estrogen-related receptor alpha), reduced mitochondrial function (attenuated complex I and II activities) and decreased myocardial expression of uncoupling protein 2 and 3 and medium-chain acyl-CoA dehydrogenase mRNA. Treatment with CBD markedly improved DOX-induced cardiac dysfunction, oxidative/nitrative stress and cell death. CBD also enhanced the DOX-induced impaired cardiac mitochondrial function and biogenesis. These data suggest that CBD may represent a novel cardioprotective strategy against DOX-induced cardiotoxicity, and the above-described effects on mitochondrial function and biogenesis may contribute to its beneficial properties described in numerous other models of tissue injury.
Resumo:
A large part of the mammalian genome is transcribed into noncoding RNAs. Long noncoding RNAs (lncRNAs) have emerged as critical epigenetic regulators of gene expression. Distinct molecular mechanisms allow lncRNAs either to activate or to repress gene expression, thereby participating in the regulation of cellular and tissue function. LncRNAs, therefore, have important roles in healthy and diseased hearts, and might be targets for therapeutic intervention. In this Review, we summarize the current knowledge of the roles of lncRNAs in cardiac development and ageing. After describing the definition and classification of lncRNAs, we present an overview of the mechanisms by which lncRNAs regulate gene expression. We discuss the multiple roles of lncRNAs in the heart, and focus on the regulation of embryonic stem cell differentiation, cardiac cell fate and development, and cardiac ageing. We emphasize the importance of chromatin remodelling in this regulation. Finally, we discuss the therapeutic and biomarker potential of lncRNAs.
Resumo:
A major challenge of cardiac tissue engineering is directing cells to establish the physiological structure and function of the myocardium being replaced. In native heart, pacing cells generate electrical stimuli that spread throughout the heartcausing cell membrane depolarization and activation of contractile apparatus. We ought to examine whether electricalstimulation of adipose tissue-derived progenitor cells (ATDPCs) exerts phenotypic and genetic changes that enhance theircardiomyogenic potential.
Resumo:
BACKGROUND AND OBJECTIVES: Sudden cardiac death (SCD) is a severe burden of modern medicine. Aldosterone antagonist is publicized as effective in reducing mortality in patients with heart failure (HF) or post myocardial infarction (MI). Our study aimed to assess the efficacy of AAs on mortality including SCD, hospitalization admission and several common adverse effects. METHODS: We searched Embase, PubMed, Web of Science, Cochrane library and clinicaltrial.gov for randomized controlled trials (RCTs) assigning AAs in patients with HF or post MI through May 2015. The comparator included standard medication or placebo, or both. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. Event rates were compared using a random effects model. Prospective RCTs of AAs with durations of at least 8 weeks were selected if they included at least one of the following outcomes: SCD, all-cause/cardiovascular mortality, all-cause/cardiovascular hospitalization and common side effects (hyperkalemia, renal function degradation and gynecomastia). RESULTS: Data from 19,333 patients enrolled in 25 trials were included. In patients with HF, this treatment significantly reduced the risk of SCD by 19% (RR 0.81; 95% CI, 0.67-0.98; p = 0.03); all-cause mortality by 19% (RR 0.81; 95% CI, 0.74-0.88, p<0.00001) and cardiovascular death by 21% (RR 0.79; 95% CI, 0.70-0.89, p<0.00001). In patients with post-MI, the matching reduced risks were 20% (RR 0.80; 95% CI, 0.66-0.98; p = 0.03), 15% (RR 0.85; 95% CI, 0.76-0.95, p = 0.003) and 17% (RR 0.83; 95% CI, 0.74-0.94, p = 0.003), respectively. Concerning both subgroups, the relative risks respectively decreased by 19% (RR 0.81; 95% CI, 0.71-0.92; p = 0.002) for SCD, 18% (RR 0.82; 95% CI, 0.77-0.88, p < 0.0001) for all-cause mortality and 20% (RR 0.80; 95% CI, 0.74-0.87, p < 0.0001) for cardiovascular mortality in patients treated with AAs. As well, hospitalizations were significantly reduced, while common adverse effects were significantly increased. CONCLUSION: Aldosterone antagonists appear to be effective in reducing SCD and other mortality events, compared with placebo or standard medication in patients with HF and/or after a MI.
Resumo:
Brugada syndrome (BrS) is a life-threatening, inherited arrhythmogenic syndrome associated with autosomal dominant mutations in SCN5A, the gene encoding the cardiac Na₊ channel alpha subunit (Naᵥ1.5). The aim of this work was to characterize the functional alterations caused by a novel SCN5A mutation, I890T, and thus establish whether this mutation is associated with BrS. The mutation was identified by direct sequencing of SCN5A from the proband’s DNA. Wild-type (WT) or I890T Naᵥ1.5 channels were heterologously expressed in human embryonic kidney cells. Sodium currents were studied using standard whole cell patch-clamp protocols and immunodetection experiments were performed using an antibody against human Naᵥ1.5 channel. A marked decrease in current density was observed in cells expressing the I890T channel (from -52.0 ± 6.5 pA/pF, n=15 to 35.9 ± 3.4 pA/pF, n = 22, at -20 mV, WT and I890T, respectively). Moreover, a positive shift of the activation curve was identified (V½ =-32.0 ± 0.3 mV, n = 18, and -27.3 ± 0.3 mV, n = 22, WT and I890T, respectively). No changes between WT and I890T currents were observed in steady-state inactivation, time course of inactivation, slow inactivation or recovery from inactivation parameters. Cell surface protein biotinylation analyses confirmed that Nav1.5 channel membrane expression levels were similar in WT and I890T cells. In summary, our data reveal that the I890T mutation, located within the pore of Nav1.5, causes an evident loss-of-function of the channel. Thus, the BrS phenotype observed in the proband is most likely due to this mutation
Resumo:
Virtually every cell and organ in the human body is dependent on a proper oxygen supply. This is taken care of by the cardiovascular system that supplies tissues with oxygen precisely according to their metabolic needs. Physical exercise is one of the most demanding challenges the human circulatory system can face. During exercise skeletal muscle blood flow can easily increase some 20-fold and its proper distribution to and within muscles is of importance for optimal oxygen delivery. The local regulation of skeletal muscle blood flow during exercise remains little understood, but adenosine and nitric oxide may take part in this process. In addition to acute exercise, long-term vigorous physical conditioning also induces changes in the cardiovasculature, which leads to improved maximal physical performance. The changes are largely central, such as structural and functional changes in the heart. The function and reserve of the heart’s own vasculature can be studied by adenosine infusion, which according to animal studies evokes vasodilation via it’s a2A receptors. This has, however, never been addressed in humans in vivo and also studies in endurance athletes have shown inconsistent results regarding the effects of sport training on myocardial blood flow. This study was performed on healthy young adults and endurance athletes and local skeletal and cardiac muscle blod flow was measured by positron emission tomography. In the heart, myocardial blood flow reserve and adenosine A2A receptor density, and in skeletal muscle, oxygen extraction and consumption was also measured. The role of adenosine in the control of skeletal muscle blood flow during exercise, and its vasodilator effects, were addressed by infusing competitive inhibitors and adenosine into the femoral artery. The formation of skeletal muscle nitric oxide was also inhibited by a drug, with and without prostanoid blockade. As a result and conclusion, it can be said that skeletal muscle blood flow heterogeneity decreases with increasing exercise intensity most likely due to increased vascular unit recruitment, but exercise hyperemia is a very complex phenomenon that cannot be mimicked by pharmacological infusions, and no single regulator factor (e.g. adenosine or nitric oxide) accounts for a significant part of exercise-induced muscle hyperemia. However, in the present study it was observed for the first time in humans that nitric oxide is not only important regulator of the basal level of muscle blood flow, but also oxygen consumption, and together with prostanoids affects muscle blood flow and oxygen consumption during exercise. Finally, even vigorous endurance training does not seem to lead to supranormal myocardial blood flow reserve, and also other receptors than A2A mediate the vasodilator effects of adenosine. In respect to cardiac work, atheletes heart seems to be luxuriously perfused at rest, which may result from reduced oxygen extraction or impaired efficiency due to pronouncedly enhanced myocardial mass developed to excel in strenuous exercise.
Resumo:
Cardiovascular mortality is 15 to 30 times higher in patients with chronic kidney disease than in the age-adjusted general population. Even minor renal dysfunction predicts cardiovascular events and death in the general population. In patients with atherosclerotic renovascular disease the annual cardiovascular event and death rate is even higher. The abnormalities in coronary and peripheral artery function in the different stages of chronic kidney disease and in renovascular disease are still poorly understood, nor have the cardiac effects of renal artery revascularization been well characterized, although considered to be beneficial. This study was conducted to characterize myocardial perfusion and peripheral endothelial function in patients with chronic kidney disease and in patients with atherosclerotic renovascular disease. Myocardial perfusion was measured with positron emission tomography (PET) and peripheral endothelial function with brachial artery flow-mediated dilatation. It has been suggested that the poor renal outcomes after the renal artery revascularization could be due to damage in the stenotic kidney parenchyma; especially the reduction in the microvascular density, changes mainly evident at the cortical level which controls almost 80% of the total renal blood flow. This study was also performed to measure the effect of renal artery stenosis revascularization on renal perfusion in patients with renovascular disease. In order to do that a PET-based method for quantification of renal perfusion was developed. The coronary flow reserve of patients with chronic kidney disease was similar to the coronary flow reserve of healthy controls. In renovascular disease the coronary flow reserve was, however, markedly reduced. Flow-mediated dilatation of brachial artery was decreased in patients with chronic kidney disease compared to healthy controls, and even more so in patients with renovascular disease. After renal artery stenosis revascularization, coronary vascular function and renal perfusion did not improve in patients with atherosclerotic renovascular disease, but in patients with bilateral renal artery stenosis, flow-mediated dilatation improved. Chronic kidney disease does not significantly affect coronary vascular function. On the contrary, coronary vascular function was severely deteriorated in patients with atherosclerotic renovascular disease, possibly because of diffuse coronary artery disease and/or diffuse microvascular disease. The peripheral endothelial function was disturbed in patients with chronic kidney disease and even more so in patient with atherosclerotic renovascular disease. Renal artery stenosis dilatation does not seem to offer any benefits over medical treatment in patients with renovascular disease, since revascularization does not improve coronary vascular function or renal perfusion.