686 resultados para Hypergeometric polynomials
Resumo:
In the area of stress-strength models there has been a large amount of work as regards estimation of the reliability R = Pr(X2 < X1 ) when X1 and X2 are independent random variables belonging to the same univariate family of distributions. The algebraic form for R = Pr(X2 < X1 ) has been worked out for the majority of the well-known distributions including Normal, uniform, exponential, gamma, weibull and pareto. However, there are still many other distributions for which the form of R is not known. We have identified at least some 30 distributions with no known form for R. In this paper we consider some of these distributions and derive the corresponding forms for the reliability R. The calculations involve the use of various special functions.
Resumo:
* Part of this work was done while the second author was on a visit at Tel Aviv University in March 2001
Resumo:
* This work has been supported by the Office of Naval Research Contract Nr. N0014-91-J1343, the Army Research Office Contract Nr. DAAD 19-02-1-0028, the National Science Foundation grants DMS-0221642 and DMS-0200665, the Deutsche Forschungsgemeinschaft grant SFB 401, the IHP Network “Breaking Complexity” funded by the European Commission and the Alexan- der von Humboldt Foundation.
Resumo:
* Dedicated to the memory of Prof. N. Obreshkoff
Resumo:
The maximal cardinality of a code W on the unit sphere in n dimensions with (x, y) ≤ s whenever x, y ∈ W, x 6= y, is denoted by A(n, s). We use two methods for obtaining new upper bounds on A(n, s) for some values of n and s. We find new linear programming bounds by suitable polynomials of degrees which are higher than the degrees of the previously known good polynomials due to Levenshtein [11, 12]. Also we investigate the possibilities for attaining the Levenshtein bounds [11, 12]. In such cases we find the distance distributions of the corresponding feasible maximal spherical codes. Usually this leads to a contradiction showing that such codes do not exist.
Resumo:
Estimates Calculating Algorithms have a long story of application to recognition problems. Furthermore they have formed a basis for algebraic recognition theory. Yet use of ECA polynomials was limited to theoretical reasoning because of complexity of their construction and optimization. The new recognition method “AVO- polynom” based upon ECA polynomial of simple structure is described.
On the Riemann-Liouville Fractional q-Integral Operator Involving a Basic Analogue of Fox H-Function
Resumo:
2000 Mathematics Subject Classification: 33D60, 26A33, 33C60
Resumo:
2000 Mathematics Subject Classification: Primary 26A33, 30C45; Secondary 33A35
Resumo:
Mathematics Subject Class.: 33C10,33D60,26D15,33D05,33D15,33D90
Resumo:
2000 Math. Subject Classification: 33E12, 65D20, 33F05, 30E15
Resumo:
Mathematics Subject Classification: 33D15, 44A10, 44A20
Resumo:
Mathematics Subject Classification: 33C60, 33C20, 44A15
Resumo:
2000 Mathematics Subject Classification: 26A33, 33C60, 44A20
Resumo:
Mathematics Subject Classification: 26A33, 33C60, 44A15
Resumo:
AMS Subj. Classification: 65D07, 65D30.