933 resultados para Hierarchical dynamic models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A dynamic model which describes the impulse behavior of concentrated grounds at high currents is described in this paper. This model is an extension of previous models in that it can successfully account for the surge behavior of concentrated grounds over a much wider range of current densities. It is able to describe the well known effect of ionization of soil as well as the observed effect of discrete breakdowns and filamentary arc paths at much higher currents. Results of verification against experimental results are also presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DEM modelling of the motion of coarse fractions of the charge inside SAG mills has now been well established for more than a decade. In these models the effect of slurry has broadly been ignored due to its complexity. Smoothed particle hydrodynamics (SPH) provides a particle based method for modelling complex free surface fluid flows and is well suited to modelling fluid flow in mills. Previous modelling has demonstrated the powerful ability of SPH to capture dynamic fluid flow effects such as lifters crashing into slurry pools, fluid draining from lifters, flow through grates and pulp lifter discharge. However, all these examples were limited by the ability to model only the slurry in the mill without the charge. In this paper, we represent the charge as a dynamic porous media through which the SPH fluid is then able to flow. The porous media properties (specifically the spatial distribution of porosity and velocity) are predicted by time averaging the mill charge predicted using a large scale DEM model. This allows prediction of transient and steady state slurry distributions in the mill and allows its variation with operating parameters, slurry viscosity and slurry volume, to be explored. (C) 2006 Published by Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An appreciation of the physical mechanisms which cause observed seismicity complexity is fundamental to the understanding of the temporal behaviour of faults and single slip events. Numerical simulation of fault slip can provide insights into fault processes by allowing exploration of parameter spaces which influence microscopic and macroscopic physics of processes which may lead towards an answer to those questions. Particle-based models such as the Lattice Solid Model have been used previously for the simulation of stick-slip dynamics of faults, although mainly in two dimensions. Recent increases in the power of computers and the ability to use the power of parallel computer systems have made it possible to extend particle-based fault simulations to three dimensions. In this paper a particle-based numerical model of a rough planar fault embedded between two elastic blocks in three dimensions is presented. A very simple friction law without any rate dependency and no spatial heterogeneity in the intrinsic coefficient of friction is used in the model. To simulate earthquake dynamics the model is sheared in a direction parallel to the fault plane with a constant velocity at the driving edges. Spontaneous slip occurs on the fault when the shear stress is large enough to overcome the frictional forces on the fault. Slip events with a wide range of event sizes are observed. Investigation of the temporal evolution and spatial distribution of slip during each event shows a high degree of variability between the events. In some of the larger events highly complex slip patterns are observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper investigates a Bayesian hierarchical model for the analysis of categorical longitudinal data from a large social survey of immigrants to Australia. Data for each subject are observed on three separate occasions, or waves, of the survey. One of the features of the data set is that observations for some variables are missing for at least one wave. A model for the employment status of immigrants is developed by introducing, at the first stage of a hierarchical model, a multinomial model for the response and then subsequent terms are introduced to explain wave and subject effects. To estimate the model, we use the Gibbs sampler, which allows missing data for both the response and the explanatory variables to be imputed at each iteration of the algorithm, given some appropriate prior distributions. After accounting for significant covariate effects in the model, results show that the relative probability of remaining unemployed diminished with time following arrival in Australia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Predicting the various responses of different species to changes in landscape structure is a formidable challenge to landscape ecology. Based on expert knowledge and landscape ecological theory, we develop five competing a priori models for predicting the presence/absence of the Koala (Phascolarctos cinereus) in Noosa Shire, south-east Queensland (Australia). A priori predictions were nested within three levels of ecological organization: in situ (site level) habitat (< 1 ha), patch level (100 ha) and landscape level (100-1000 ha). To test the models, Koala surveys and habitat surveys (n = 245) were conducted across the habitat mosaic. After taking into account tree species preferences, the patch and landscape context, and the neighbourhood effect of adjacent present sites, we applied logistic regression and hierarchical partitioning analyses to rank the alternative models and the explanatory variables. The strongest support was for a multilevel model, with Koala presence best predicted by the proportion of the landscape occupied by high quality habitat, the neighbourhood effect, the mean nearest neighbour distance between forest patches, the density of forest patches and the density of sealed roads. When tested against independent data (n = 105) using a receiver operator characteristic curve, the multilevel model performed moderately well. The study is consistent with recent assertions that habitat loss is the major driver of population decline, however, landscape configuration and roads have an important effect that needs to be incorporated into Koala conservation strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on the development of an artificial neural network (ANN) method to detect laminar defects following the pattern matching approach utilizing dynamic measurement. Although structural health monitoring (SHM) using ANN has attracted much attention in the last decade, the problem of how to select the optimal class of ANN models has not been investigated in great depth. It turns out that the lack of a rigorous ANN design methodology is one of the main reasons for the delay in the successful application of the promising technique in SHM. In this paper, a Bayesian method is applied in the selection of the optimal class of ANN models for a given set of input/target training data. The ANN design method is demonstrated for the case of the detection and characterisation of laminar defects in carbon fibre-reinforced beams using flexural vibration data for beams with and without non-symmetric delamination damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A field study in three vineyards in southern Queensland (Australia) was carried out to develop predictive models for individual leaf area and shoot leaf area of two cultivars (Cabernet Sauvignon and Shiraz) of grapevines (Vitis Vinifera L.). Digital image analysis was used to measure leaf vein length and leaf area. Stepwise regressions of untransformed and transformed models consisting of up to six predictor variables for leaf area and three predictor variables for shoot leaf area were carried out to obtain the most efficient models. High correlation coefficients were found for log10 transformed individual leaf and shoot leaf area models. The significance of predictor variables in the models varied across vineyards and cultivars, demonstrating the discontinuous and heterogeneous nature of vineyards. The application of this work in a grapevine modeling environment and in a dynamic vineyard management context are discussed. Sample sizes for quantification of individual leaf areas and areas of leaves on shoots are proposed based on target margins of errors of sampled data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sucesso profissional está relacionado à satisfação do indivíduo com a sua carreira em longo prazo. Essa satisfação deriva de aspectos intrínsecos e extrínsecos, referentes a uma dimensão objetiva - aspectos mais visíveis do sucesso na carreira - que inclui: salários, progressão profissional, status e oportunidades de desenvolvimento de carreira, como promoção; e outra subjetiva, que se refere à interpretação pessoal do que seja sucesso, em especial na carreira: satisfação com o trabalho, orgulho, sentimentos de autorrealização, dentre outros. A percepção do sucesso com a carreira pode estar associada a características individuais como, por exemplo, a resiliência, que representa o processo dinâmico de adaptação positiva frente às adversidades. Na literatura, não foram localizados estudos que relacionem ambas as variáveis, isto é, sobre o quanto a resiliência pessoal pode contribuir para a percepção de sucesso na carreira. A fim de investigar essa influência, esta pesquisa tem como objetivo principal identificar se resiliência pessoal de administradores prediz sua percepção de sucesso na carreira. Participaram 137 administradores, formados em diversas instituições, sendo 56,1% do sexo feminino e 43,7% do sexo masculino, com idade média de 33 anos, divididos entre casados ou solteiros (44,5% para ambos). Os dados foram coletados por meio de um questionário sociodemográfico, baseado na Escala de Percepção de Sucesso na Carreira e da Connor-Davidson Resilience Scale (CD-RISC). As respostas compuseram um banco eletrônico de dados e foram analisados por meio do Statistical Package for the Social Sciences (SPSS). Resultados de análises de regressão hierárquica revelaram que resiliência prediz 5,5% da percepção do sucesso na carreira objetiva e 9% da percepção de sucesso na carreira subjetiva. Ao acrescentar a interação entre idade e tempo de trabalho, o poder de predição de ambos os modelos, tanto para sucesso objetivo, quanto para o subjetivo, elevou-se substancialmente, chegando ao dobro. Resiliência contribui para que os participantes percebam sucesso na carreira em ambas as dimensões, objetiva e subjetiva, e a predição é potencializada pela interação entre idade e tempo de trabalho. Os achados deste estudo confirmaram a hipótese levantada. O estudo trouxe contribuições para a área, mas também foram reconhecidas limitações, em função das quais foi proposta uma agenda de pesquisa para estudos futuros.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Visualization has proven to be a powerful and widely-applicable tool the analysis and interpretation of data. Most visualization algorithms aim to find a projection from the data space down to a two-dimensional visualization space. However, for complex data sets living in a high-dimensional space it is unlikely that a single two-dimensional projection can reveal all of the interesting structure. We therefore introduce a hierarchical visualization algorithm which allows the complete data set to be visualized at the top level, with clusters and sub-clusters of data points visualized at deeper levels. The algorithm is based on a hierarchical mixture of latent variable models, whose parameters are estimated using the expectation-maximization algorithm. We demonstrate the principle of the approach first on a toy data set, and then apply the algorithm to the visualization of a synthetic data set in 12 dimensions obtained from a simulation of multi-phase flows in oil pipelines and to data in 36 dimensions derived from satellite images.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The deficiencies of stationary models applied to financial time series are well documented. A special form of non-stationarity, where the underlying generator switches between (approximately) stationary regimes, seems particularly appropriate for financial markets. We use a dynamic switching (modelled by a hidden Markov model) combined with a linear dynamical system in a hybrid switching state space model (SSSM) and discuss the practical details of training such models with a variational EM algorithm due to [Ghahramani and Hilton,1998]. The performance of the SSSM is evaluated on several financial data sets and it is shown to improve on a number of existing benchmark methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the analysis and prediction of many real-world time series, the assumption of stationarity is not valid. A special form of non-stationarity, where the underlying generator switches between (approximately) stationary regimes, seems particularly appropriate for financial markets. We introduce a new model which combines a dynamic switching (controlled by a hidden Markov model) and a non-linear dynamical system. We show how to train this hybrid model in a maximum likelihood approach and evaluate its performance on both synthetic and financial data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A CSSL- type modular FORTRAN package, called ACES, has been developed to assist in the simulation of the dynamic behaviour of chemical plant. ACES can be harnessed, for instance, to simulate the transients in startups or after a throughput change. ACES has benefited from two existing simulators. The structure was adapted from ICL SLAM and most plant models originate in DYFLO. The latter employs sequential modularisation which is not always applicable to chemical engineering problems. A novel device of twice- round execution enables ACES to achieve general simultaneous modularisation. During the FIRST ROUND, STATE-VARIABLES are retrieved from the integrator and local calculations performed. During the SECOND ROUND, fresh derivatives are estimated and stored for simultaneous integration. ACES further includes a version of DIFSUB, a variable-step integrator capable of handling stiff differential systems. ACES is highly formalised . It does not use pseudo steady- state approximations and excludes inconsistent and arbitrary features of DYFLO. Built- in debug traps make ACES robust. ACES shows generality, flexibility, versatility and portability, and is very convenient to use. It undertakes substantial housekeeping behind the scenes and thus minimises the detailed involvement of the user. ACES provides a working set of defaults for simulation to proceed as far as possible. Built- in interfaces allow for reactions and user supplied algorithms to be incorporated . New plant models can be easily appended. Boundary- value problems and optimisation may be tackled using the RERUN feature. ACES is file oriented; a STATE can be saved in a readable form and reactivated later. Thus piecewise simulation is possible. ACES has been illustrated and verified to a large extent using some literature-based examples. Actual plant tests are desirable however to complete the verification of the library. Interaction and graphics are recommended for future work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Keyword identification in one of two simultaneous sentences is improved when the sentences differ in F0, particularly when they are almost continuously voiced. Sentences of this kind were recorded, monotonised using PSOLA, and re-synthesised to give a range of harmonic ?F0s (0, 1, 3, and 10 semitones). They were additionally re-synthesised by LPC with the LPC residual frequency shifted by 25% of F0, to give excitation with inharmonic but regularly spaced components. Perceptual identification of frequency-shifted sentences showed a similar large improvement with nominal ?F0 as seen for harmonic sentences, although overall performance was about 10% poorer. We compared performance with that of two autocorrelation-based computational models comprising four stages: (i) peripheral frequency selectivity and half-wave rectification; (ii) within-channel periodicity extraction; (iii) identification of the two major peaks in the summary autocorrelation function (SACF); (iv) a template-based approach to speech recognition using dynamic time warping. One model sampled the correlogram at the target-F0 period and performed spectral matching; the other deselected channels dominated by the interferer and performed matching on the short-lag portion of the residual SACF. Both models reproduced the monotonic increase observed in human performance with increasing ?F0 for the harmonic stimuli, but not for the frequency-shifted stimuli. A revised version of the spectral-matching model, which groups patterns of periodicity that lie on a curve in the frequency-delay plane, showed a closer match to the perceptual data for frequency-shifted sentences. The results extend the range of phenomena originally attributed to harmonic processing to grouping by common spectral pattern.