625 resultados para Heritage tourism
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Geografia - IGCE
Resumo:
Pós-graduação em Geografia - FCT
Resumo:
Includes bibliography.
Resumo:
Incluye Bibliografía
Resumo:
There are significant, fundamental changes taking place in global air and sea surface temperatures and sea levels. The Fourth Assessment Report of the Intergovernmental Panel on Climate Change noted that many of the warmest years on the instrumental record of global surface temperatures have occurred within the last twelve years, i.e. 1995-2006 (IPCC, 2007). The Caribbean tourism product is particularly vulnerable to climate change. On the demand side, mitigation measures in other countries – for example, measures to reduce the consumption of fossil fuels – could have implications for airfares and cruise prices and, therefore, for the demand for travel, particularly to long-haul destinations such as the Caribbean (Clayton, 2009). On the supply side, sea level rise will cause beaches to disappear and damage coastal resorts. Changes in the frequency and severity of hurricanes are likely to magnify that damage. Other indirect impacts on the tourism product include rising insurance premiums and competition for water resources (Cashman, Cumberbatch, & Moore, 2012). The present report has used information on historic and future Caribbean climate data to calculate that the Caribbean tourism climatic index (TCI) ranges from −20 (impossible) to +100 (ideal). In addition to projections for the Caribbean, the report has produced TCI projections for the New York City area (specifically, Central Park), which have been used as comparators for Caribbean country projections. The conditions in the source market provide a benchmark against which visitors may judge their experience in the tourism destination. The historical and forecasted TCIs for the Caribbean under both the A2 and B2 climate scenarios of the IPCC suggest that climatic conditions in the Caribbean are expected to deteriorate, and are likely to become less conducive to tourism. More specifically, the greatest decline in the TCI is likely to occur during the northern hemisphere summer months from May to September. At the same time, the scenario analysis indicates that home conditions during the traditional tourist season (December – April) are likely to improve, which could make it more attractive for visitors from these markets to consider ‘staycations’ as an alternative to overseas trips.
Resumo:
The main aim of this study is to estimate the economic impact of climate change on nine countries in the Caribbean basin: Aruba, Barbados, Dominican Republic, Guyana, Jamaica, Montserrat, Netherlands Antilles, Saint Lucia and Trinidad and Tobago. A typical tourism demand function, with tourist arrivals as the dependent variable, is used in the analysis. To establish the baseline, the period under analysis is 1989-2007 and the independent variables are destination country GDP per capita and consumer price index, source country GDP, oil prices to proxy transportation costs between source and destination countries. At this preliminary stage the climate variables are used separately to augment the tourism demand function to establish a relationship, if any, among the variables. Various econometric models (single OLS models for each country, pooled regression, GMM estimation and random effects panel models) were considered in an attempt to find the best way to model the data. The best fit for the data (1989-2007) is the random effects panel data model augmented by both climate variables, i.e. temperature and precipitation. Projections of all variables in the model for the 2008-2100 period were done using forecasting techniques. Projections for the climate variables were undertaken by INSMET. The cost of climate change to the tourism sector was estimated under three scenarios: A2, B2 and BAU (the mid-point of the A2 and B2 scenarios). The estimated costs to tourism for the Caribbean subregion under the three scenarios are all very high and ranges from US$43.9 billion under the B2 scenario to US$46.3 billion under the BAU scenario.