985 resultados para Helium Hamiltonian
Resumo:
In this thesis, I will discuss how information-theoretic arguments can be used to produce sharp bounds in the studies of quantum many-body systems. The main advantage of this approach, as opposed to the conventional field-theoretic argument, is that it depends very little on the precise form of the Hamiltonian. The main idea behind this thesis lies on a number of results concerning the structure of quantum states that are conditionally independent. Depending on the application, some of these statements are generalized to quantum states that are approximately conditionally independent. These structures can be readily used in the studies of gapped quantum many-body systems, especially for the ones in two spatial dimensions. A number of rigorous results are derived, including (i) a universal upper bound for a maximal number of topologically protected states that is expressed in terms of the topological entanglement entropy, (ii) a first-order perturbation bound for the topological entanglement entropy that decays superpolynomially with the size of the subsystem, and (iii) a correlation bound between an arbitrary local operator and a topological operator constructed from a set of local reduced density matrices. I also introduce exactly solvable models supported on a three-dimensional lattice that can be used as a reliable quantum memory.
Resumo:
Within the framework of second-order Rayleigh-Schrodinger perturbation theory, the polaronic correction to the first excited state energy of an electron in an quantum dot with anisotropic parabolic confinements is presented. Compared with isotropic confinements, anisotropic confinements will make the degeneracy of the excited states to be totally or partly lifted. On the basis of a three-dimensional Frohlich's Hamiltonian with anisotropic confinements, the first excited state properties in two-dimensional quantum dots as well as quantum wells and wires can also be easily obtained by taking special limits. Calculations show that the first excited polaronic effect can be considerable in small quantum dots.
Resumo:
The theories of relativity and quantum mechanics, the two most important physics discoveries of the 20th century, not only revolutionized our understanding of the nature of space-time and the way matter exists and interacts, but also became the building blocks of what we currently know as modern physics. My thesis studies both subjects in great depths --- this intersection takes place in gravitational-wave physics.
Gravitational waves are "ripples of space-time", long predicted by general relativity. Although indirect evidence of gravitational waves has been discovered from observations of binary pulsars, direct detection of these waves is still actively being pursued. An international array of laser interferometer gravitational-wave detectors has been constructed in the past decade, and a first generation of these detectors has taken several years of data without a discovery. At this moment, these detectors are being upgraded into second-generation configurations, which will have ten times better sensitivity. Kilogram-scale test masses of these detectors, highly isolated from the environment, are probed continuously by photons. The sensitivity of such a quantum measurement can often be limited by the Heisenberg Uncertainty Principle, and during such a measurement, the test masses can be viewed as evolving through a sequence of nearly pure quantum states.
The first part of this thesis (Chapter 2) concerns how to minimize the adverse effect of thermal fluctuations on the sensitivity of advanced gravitational detectors, thereby making them closer to being quantum-limited. My colleagues and I present a detailed analysis of coating thermal noise in advanced gravitational-wave detectors, which is the dominant noise source of Advanced LIGO in the middle of the detection frequency band. We identified the two elastic loss angles, clarified the different components of the coating Brownian noise, and obtained their cross spectral densities.
The second part of this thesis (Chapters 3-7) concerns formulating experimental concepts and analyzing experimental results that demonstrate the quantum mechanical behavior of macroscopic objects - as well as developing theoretical tools for analyzing quantum measurement processes. In Chapter 3, we study the open quantum dynamics of optomechanical experiments in which a single photon strongly influences the quantum state of a mechanical object. We also explain how to engineer the mechanical oscillator's quantum state by modifying the single photon's wave function.
In Chapters 4-5, we build theoretical tools for analyzing the so-called "non-Markovian" quantum measurement processes. Chapter 4 establishes a mathematical formalism that describes the evolution of a quantum system (the plant), which is coupled to a non-Markovian bath (i.e., one with a memory) while at the same time being under continuous quantum measurement (by the probe field). This aims at providing a general framework for analyzing a large class of non-Markovian measurement processes. Chapter 5 develops a way of characterizing the non-Markovianity of a bath (i.e.,whether and to what extent the bath remembers information about the plant) by perturbing the plant and watching for changes in the its subsequent evolution. Chapter 6 re-analyzes a recent measurement of a mechanical oscillator's zero-point fluctuations, revealing nontrivial correlation between the measurement device's sensing noise and the quantum rack-action noise.
Chapter 7 describes a model in which gravity is classical and matter motions are quantized, elaborating how the quantum motions of matter are affected by the fact that gravity is classical. It offers an experimentally plausible way to test this model (hence the nature of gravity) by measuring the center-of-mass motion of a macroscopic object.
The most promising gravitational waves for direct detection are those emitted from highly energetic astrophysical processes, sometimes involving black holes - a type of object predicted by general relativity whose properties depend highly on the strong-field regime of the theory. Although black holes have been inferred to exist at centers of galaxies and in certain so-called X-ray binary objects, detecting gravitational waves emitted by systems containing black holes will offer a much more direct way of observing black holes, providing unprecedented details of space-time geometry in the black-holes' strong-field region.
The third part of this thesis (Chapters 8-11) studies black-hole physics in connection with gravitational-wave detection.
Chapter 8 applies black hole perturbation theory to model the dynamics of a light compact object orbiting around a massive central Schwarzschild black hole. In this chapter, we present a Hamiltonian formalism in which the low-mass object and the metric perturbations of the background spacetime are jointly evolved. Chapter 9 uses WKB techniques to analyze oscillation modes (quasi-normal modes or QNMs) of spinning black holes. We obtain analytical approximations to the spectrum of the weakly-damped QNMs, with relative error O(1/L^2), and connect these frequencies to geometrical features of spherical photon orbits in Kerr spacetime. Chapter 11 focuses mainly on near-extremal Kerr black holes, we discuss a bifurcation in their QNM spectra for certain ranges of (l,m) (the angular quantum numbers) as a/M → 1. With tools prepared in Chapter 9 and 10, in Chapter 11 we obtain an analytical approximate for the scalar Green function in Kerr spacetime.
Resumo:
This thesis addresses whether it is possible to build a robust memory device for quantum information. Many schemes for fault-tolerant quantum information processing have been developed so far, one of which, called topological quantum computation, makes use of degrees of freedom that are inherently insensitive to local errors. However, this scheme is not so reliable against thermal errors. Other fault-tolerant schemes achieve better reliability through active error correction, but incur a substantial overhead cost. Thus, it is of practical importance and theoretical interest to design and assess fault-tolerant schemes that work well at finite temperature without active error correction.
In this thesis, a three-dimensional gapped lattice spin model is found which demonstrates for the first time that a reliable quantum memory at finite temperature is possible, at least to some extent. When quantum information is encoded into a highly entangled ground state of this model and subjected to thermal errors, the errors remain easily correctable for a long time without any active intervention, because a macroscopic energy barrier keeps the errors well localized. As a result, stored quantum information can be retrieved faithfully for a memory time which grows exponentially with the square of the inverse temperature. In contrast, for previously known types of topological quantum storage in three or fewer spatial dimensions the memory time scales exponentially with the inverse temperature, rather than its square.
This spin model exhibits a previously unexpected topological quantum order, in which ground states are locally indistinguishable, pointlike excitations are immobile, and the immobility is not affected by small perturbations of the Hamiltonian. The degeneracy of the ground state, though also insensitive to perturbations, is a complicated number-theoretic function of the system size, and the system bifurcates into multiple noninteracting copies of itself under real-space renormalization group transformations. The degeneracy, the excitations, and the renormalization group flow can be analyzed using a framework that exploits the spin model's symmetry and some associated free resolutions of modules over polynomial algebras.
Resumo:
We investigate high-order harmonic emission and isolated attosecond pulse (IAP) generation in atoms driven by a two-colour multi-cycle laser field consisting of an 800 nm pulse and an infrared laser pulse at an arbitrary wavelength. With moderate laser intensity, an IAP of similar to 220 as can be generated in helium atoms by using two-colour laser pulses of 35 fs/800 nm and 46 fs/1150 nm. The discussion based on the three-step semiclassical model, and time-frequency analysis shows a clear picture of the high-order harmonic generation in the waveform-controlled laser field which is of benefit to the generation of XUV IAP and attosecond electron pulses. When the propagation effect is included, the duration of the IAP can be shorter than 200 as, when the driving laser pulses are focused 1 mm before the gas medium with a length between 1.5 mm and 2 mm.
Resumo:
In the first part I perform Hartree-Fock calculations to show that quantum dots (i.e., two-dimensional systems of up to twenty interacting electrons in an external parabolic potential) undergo a gradual transition to a spin-polarized Wigner crystal with increasing magnetic field strength. The phase diagram and ground state energies have been determined. I tried to improve the ground state of the Wigner crystal by introducing a Jastrow ansatz for the wave function and performing a variational Monte Carlo calculation. The existence of so called magic numbers was also investigated. Finally, I also calculated the heat capacity associated with the rotational degree of freedom of deformed many-body states and suggest an experimental method to detect Wigner crystals.
The second part of the thesis investigates infinite nuclear matter on a cubic lattice. The exact thermal formalism describes nucleons with a Hamiltonian that accommodates on-site and next-neighbor parts of the central, spin-exchange and isospin-exchange interaction. Using auxiliary field Monte Carlo methods, I show that energy and basic saturation properties of nuclear matter can be reproduced. A first order phase transition from an uncorrelated Fermi gas to a clustered system is observed by computing mechanical and thermodynamical quantities such as compressibility, heat capacity, entropy and grand potential. The structure of the clusters is investigated with the help two-body correlations. I compare symmetry energy and first sound velocities with literature and find reasonable agreement. I also calculate the energy of pure neutron matter and search for a similar phase transition, but the survey is restricted by the infamous Monte Carlo sign problem. Also, a regularization scheme to extract potential parameters from scattering lengths and effective ranges is investigated.
Resumo:
Moving mesh methods (also called r-adaptive methods) are space-adaptive strategies used for the numerical simulation of time-dependent partial differential equations. These methods keep the total number of mesh points fixed during the simulation, but redistribute them over time to follow the areas where a higher mesh point density is required. There are a very limited number of moving mesh methods designed for solving field-theoretic partial differential equations, and the numerical analysis of the resulting schemes is challenging. In this thesis we present two ways to construct r-adaptive variational and multisymplectic integrators for (1+1)-dimensional Lagrangian field theories. The first method uses a variational discretization of the physical equations and the mesh equations are then coupled in a way typical of the existing r-adaptive schemes. The second method treats the mesh points as pseudo-particles and incorporates their dynamics directly into the variational principle. A user-specified adaptation strategy is then enforced through Lagrange multipliers as a constraint on the dynamics of both the physical field and the mesh points. We discuss the advantages and limitations of our methods. The proposed methods are readily applicable to (weakly) non-degenerate field theories---numerical results for the Sine-Gordon equation are presented.
In an attempt to extend our approach to degenerate field theories, in the last part of this thesis we construct higher-order variational integrators for a class of degenerate systems described by Lagrangians that are linear in velocities. We analyze the geometry underlying such systems and develop the appropriate theory for variational integration. Our main observation is that the evolution takes place on the primary constraint and the 'Hamiltonian' equations of motion can be formulated as an index 1 differential-algebraic system. We then proceed to construct variational Runge-Kutta methods and analyze their properties. The general properties of Runge-Kutta methods depend on the 'velocity' part of the Lagrangian. If the 'velocity' part is also linear in the position coordinate, then we show that non-partitioned variational Runge-Kutta methods are equivalent to integration of the corresponding first-order Euler-Lagrange equations, which have the form of a Poisson system with a constant structure matrix, and the classical properties of the Runge-Kutta method are retained. If the 'velocity' part is nonlinear in the position coordinate, we observe a reduction of the order of convergence, which is typical of numerical integration of DAEs. We also apply our methods to several models and present the results of our numerical experiments.
Resumo:
Ternary alloys of nickel-palladium-phosphorus and iron-palladium- phosphorus containing 20 atomic % phosphorus were rapidly quenched from the liquid state. The structure of the quenched alloys was investigated by X-ray diffraction. Broad maxima in the diffraction patterns, indicative of a glass-like structure, were obtained for 13 to 73 atomic % nickel and 13 to 44 atomic % iron, with palladium adding up to 80%.
Radial distribution functions were computed from the diffraction data and yielded average interatomic distances and coordination numbers. The structure of the amorphous alloys could be explained in terms of structural units analogous to those existing in the crystalline Pd3P, Ni3P and Fe3P phases, with iron or nickel substituting for palladium. A linear relationship between interatomic distances and composition, similar to Vegard's law, was shown for these metallic glasses.
Electrical resistivity measurements showed that the quenched alloys were metallic. Measurements were performed from liquid helium temperatures (4.2°K) up to the vicinity of the melting points (900°K- 1000°K). The temperature coefficient in the glassy state was very low, of the order of 10-4/°K. A resistivity minimum was found at low temperature, varying between 9°K and 14°K for Nix-Pd80-x -P20 and between 17°K and 96°K for Fex-Pd80-x -P20, indicating the presence of a Kondo effect. Resistivity measurements, with a constant heating rate of about 1.5°C/min,showed progressive crystallization above approximately 600°K.
The magnetic moments of the amorphous Fe-Pd-P alloys were measured as a function of magnetic field and temperature. True ferromagnetism was found for the alloys Fe32-Pd48-P20 and Fe44-Pd36-P20 with Curie points at 165° K and 380° K respectively. Extrapolated values of the saturation magnetic moments to 0° K were 1.70 µB and 2.10 µB respectively. The amorphous alloy Fe23-Pd57-P20 was assumed to be superparamagnetic. The experimental data indicate that phosphorus contributes to the decrease of moments by electron transfer, whereas palladium atoms probably have a small magnetic moment. A preliminary investigation of the Ni-Pd-P amorphous alloys showed that these alloys are weakly paramagnetic.
Resumo:
Time-of-flight measurements of energetic He atoms, field ionization of cryogenic liquid helium clusters, and time-of-flight and REMPI spectroscopy of radical salt clusters were investigated experimentally. The excited He atoms were generated in a corona discharge. Two strong neutral peaks were observed, accompanied by a prompt photon peak and a charged peak. All peaks were correlated with the pulsing of the discharge. The neutral hyperthermal and metastable atoms were formed by different mechanisms at different stages of the corona discharge. Positively charged helium droplets were produced by ionization of liquid helium in an electrostatic spraying experiment. The fluid emerging from a thin glass capillary was ionized by a high voltage applied to a needle inside the capillary. Fine droplets (less than 10 µm in diameter) were produced in showers with currents as high as 0.4 µA at 2-4 kV. The high currents resulting from field ionization in helium and the low surface tension of He I, led to charge densities that greatly exceeded the Rayleigh limit, thus resulting in coulombic explosion of the liquid. In contrast, liquid nitrogen formed a well-defined Taylor cone with droplets having diameters comparable to the jet (≈100 µm) at lower currents (10 nA) and higher voltages (8 kV). The metal-halide clusters of calcium and chlorine were generated by laser ablation of calcium metal in a Ar/CCl4 expansion. A visible spectrum of the Ca2Cl3 cluster was observed from 651 to 630 nm by 1 +1' REMPI. The spectra were composed of a strong origin band at 15 350.8 cm-1 and several weak vibronic bands. Density functional calculations predicted three minimum energy isomers. The spectrum was assigned to the 2B2 ← X 2A1 transition of a planar C2V structure having a ring of two Cl and two Ca atoms and a terminal Cl atom. The ring isomer of Ca2Cl3 has the unpaired electron localized on one Ca2+ ion to form a Ca+ chromophore. A second electronic band of Ca2Cl3 was observed at 720 nm. The band is sharply different from the 650 nm band and likely due to a different isomer.
Resumo:
A pseudo-spin model is intended to describe the physical dynamics of unbound electrons in the wall of cytoskeletal microtubule (MT). Due to the inherent symmetry of the structure and the electric properties in the MT, one may treat it as a one-dimensional ferroelectric system, and describe the nonlinear dynamics of dimer electric dipoles in one protofilament of the MT by virtue of the double-well potential. Consequently, the physical problem has been mapped onto the pseudo-spin system, and the mean-field approximation has been taken to get some physical results.
Resumo:
We theoretically investigate the high-order harmonic generation in a helium atom with a two-color optical field synthesized by an intense 6 fs pulse at 800 nm and a relatively weak 21.3 fs pulse at 400 nm. When the frequency-doubled pulse is properly time shifted with respect to the fundamental pulse, an ultrabroad extreme ultraviolet supercontinuum spectrum with a 148 eV spectral width can be generated which directly creates an isolated 65 as pulse even without phase compensation. We explain this extraordinary phenomenon by analyzing maximum electron kinetic energies at different return times.
Resumo:
We know from the CMB and observations of large-scale structure that the universe is extremely flat, homogenous, and isotropic. The current favored mechanism for generating these characteristics is inflation, a theorized period of exponential expansion of the universe that occurred shortly after the Big Bang. Most theories of inflation generically predict a background of stochastic gravitational waves. These gravitational waves should leave their unique imprint on the polarization of the CMB via Thompson scattering. Scalar perturbations of the metric will cause a pattern of polarization with no curl (E-mode). Tensor perturbations (gravitational waves) will cause a unique pattern of polarization on the CMB that includes a curl component (B-mode). A measurement of the ratio of the tensor to scalar perturbations (r) tells us the energy scale of inflation. Recent measurements by the BICEP2 team detect the B-mode spectrum with a tensor-to-scalar ratio of r = 0.2 (+0.05, −0.07). An independent confirmation of this result is the next step towards understanding the inflationary universe.
This thesis describes my work on a balloon-borne polarimeter called SPIDER, which is designed to illuminate the physics of the early universe through measurements of the cosmic microwave background polarization. SPIDER consists of six single-frequency, on-axis refracting telescopes contained in a shared-vacuum liquid-helium cryostat. Its large format arrays of millimeter-wave detectors and tight control of systematics will give it unprecedented sensitivity. This thesis describes how the SPIDER detectors are characterized and calibrated for flight, as well as how the systematics requirements for the SPIDER system are simulated and measured.
Resumo:
Bulk n-lnSb is investigated at a heterodyne detector for the submillimeter wavelength region. Two modes or operation are investigated: (1) the Rollin or hot electron bolometer mode (zero magnetic field), and (2) the Putley mode (quantizing magnetic field). The highlight of the thesis work is the pioneering demonstration or the Putley mode mixer at several frequencies. For example, a double-sideband system noise temperature of about 510K was obtained using a 812 GHz methanol laser for the local oscillator. This performance is at least a factor or 10 more sensitive than any other performance reported to date at the same frequency. In addition, the Putley mode mixer achieved system noise temperatures of 250K at 492 GHz and 350K at 625 GHz. The 492 GHz performance is about 50% better and the 625 GHz is about 100% better than previous best performances established by the Rollin-mode mixer. To achieve these results, it was necessary to design a totally new ultra-low noise, room-temperature preamp to handle the higher source impedance imposed by the Putley mode operation. This preamp has considerably less input capacitance than comparably noisy, ambient designs.
In addition to advancing receiver technology, this thesis also presents several novel results regarding the physics of n-lnSb at low temperatures. A Fourier transform spectrometer was constructed and used to measure the submillimeter wave absorption coefficient of relatively pure material at liquid helium temperatures and in zero magnetic field. Below 4.2K, the absorption coefficient was found to decrease with frequency much faster than predicted by Drudian theory. Much better agreement with experiment was obtained using a quantum theory based on inverse-Bremmstrahlung in a solid. Also the noise of the Rollin-mode detector at 4.2K was accurately measured and compared with theory. The power spectrum is found to be well fit by a recent theory of non- equilibrium noise due to Mather. Surprisingly, when biased for optimum detector performance, high purity lnSb cooled to liquid helium temperatures generates less noise than that predicted by simple non-equilibrium Johnson noise theory alone. This explains in part the excellent performance of the Rollin-mode detector in the millimeter wavelength region.
Again using the Fourier transform spectrometer, spectra are obtained of the responsivity and direct detection NEP as a function of magnetic field in the range 20-110 cm-1. The results show a discernable peak in the detector response at the conduction electron cyclotron resonance frequency tor magnetic fields as low as 3 KG at bath temperatures of 2.0K. The spectra also display the well-known peak due to the cyclotron resonance of electrons bound to impurity states. The magnitude of responsivity at both peaks is roughly constant with magnet1c field and is comparable to the low frequency Rollin-mode response. The NEP at the peaks is found to be much better than previous values at the same frequency and comparable to the best long wavelength results previously reported. For example, a value NEP=4.5x10-13/Hz1/2 is measured at 4.2K, 6 KG and 40 cm-1. Study of the responsivity under conditions of impact ionization showed a dramatic disappearance of the impurity electron resonance while the conduction electron resonance remained constant. This observation offers the first concrete evidence that the mobility of an electron in the N=0 and N=1 Landau levels is different. Finally, these direct detection experiments indicate that the excellent heterodyne performance achieved at 812 GHz should be attainable up to frequencies of at least 1200 GHz.
Resumo:
This work reports investigations upon weakly superconducting proximity effect bridges. These bridges, which exhibit the Josephson effects, are produced by bisecting a superconductor with a short (<1µ) region of material whose superconducting transition temperature is below that of the adjacent superconductors. These bridges are fabricated from layered refractory metal thin films whose transition temperature will depend upon the thickness ratio of the materials involved. The thickness ratio is changed in the area of the bridge to lower its transition temperature. This is done through novel photolithographic techniques described in the text, Chapter 2.
If two such proximity effect bridges are connected in parallel, they form a quantum interferometer. The maximum zero voltage current through this circuit is periodically modulated by the magnetic flux through the circuit. At a constant bias current, the modulation of the critical current produces a modulation in the dc voltage across the bridge. This change in dc voltage has been found to be the result of a change in the internal dissipation in the device. A simple model using lumped circuit theory and treating the bridges as quantum oscillators of frequency ω = 2eV/h, where V is the time average voltage across the device, has been found to adequately describe the observed voltage modulation.
The quantum interferometers have been converted to a galvanometer through the inclusion of an integral thin film current path which couples magnetic flux through the interferometer. Thus a change in signal current produces a change in the voltage across the interferometer at a constant bias current. This work is described in Chapter 3 of the text.
The sensitivity of any device incorporating proximity effect bridges will ultimately be determined by the fluctuations in their electrical parameters. He have measured the spectral power density of the voltage fluctuations in proximity effect bridges using a room temperature electronics and a liquid helium temperature transformer to match the very low (~ 0.1 Ω) impedances characteristic of these devices.
We find the voltage noise to agree quite well with that predicted by phonon noise in the normal conduction through the bridge plus a contribution from the superconducting pair current through the bridge which is proportional to the ratios of this current to the time average voltage across the bridge. The total voltage fluctuations are given by <V^2(f ) > = 4kTR^2_d I/V where R_d is the dynamic resistance, I the total current, and V the voltage across the bridge . An additional noise source appears with a strong 1/f^(n) dependence , 1.5 < n < 2, if the bridges are fabricated upon a glass substrate. This excess noise, attributed to thermodynamic temperature fluctuations in the volume of the bridge, increases dramatically on a glass substrate due to the greatly diminished thermal diffusivity of the glass as compared to sapphire.
Resumo:
O efeito magnetocalórico, base da refrigeração magnética, é caracterizado por duas quantidades: a variação isotérmica da entropia (ΔST) e a variação adiabática da temperatura (ΔTS); que são obtidas sob variações na intensidade de um campo magnético aplicado. Em sistemas que apresentam anisotropia magnética, pode‐se definir o efeito magnetocalórico anisotrópico, o qual, por definição, é calculado sob variações na direção de aplicação de um campo magnético cuja intensidade mantém‐se fixa, e é caracterizado por duas quantidades: a variação anisotrópico‐isotérmica da entropia (ΔSan) e a variação anisotrópico‐adiabática da temperatura (ΔTan). O efeito magnetocalórico e o efeito magnetocalórico anisotrópico foram estudados nos compostos intermetálicos formados por terras e outros materiais não magnéticos: RNi2, RNi5, RZn e Gd1‐nPrnAl2. Os cálculos foram feitos partindo de hamiltonianos modelo que incluem as interações de troca, Zeeman, de campo cristalino e quadrupolar.