879 resultados para Hash functions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

L’implication des protéines tyrosines phosphatases (PTPs) dans la régulation de la signalisation et la médiation des fonctions cellulaires a été bien établie dans les dernières années. Cependant, les mécanismes moléculaires par lesquels les PTPs régulent les processus fondamentaux tels que l’angiogenèse demeurent méconnus. Il a été rapporté que l’expression de la PTP DEP-1 (Density-enhanced phosphatase 1) augmente avec la densité cellulaire et corrèle avec la déphosphorylation du récepteur VEGFR2. Cette déphosphorylation contribue à l’inhibition de contact dans les cellules endothéliales à confluence et diminue l’activité du VEGFR2 en déphosphorylant spécifiquement ses résidus catalytiques Y1054/1059. De plus, la plupart des voies de signalisation en aval du VEGFR2 sont diminuées sauf la voie Src-Gab1-AKT. DEP-1 déphosphoryle la Y529 de Src et contribue à la promotion de la survie dans les cellules endothéliales. L’objectif de cette thèse est de mieux définir le rôle de DEP-1 dans la régulation de l’activité de Src et les réponses biologiques dans les cellules endothéliales. Nous avons identifié les résidus Y1311 et Y1320 dans la queue C-terminale de DEP-1 comme sites majeurs de phosphorylation en réponse au VEGF. La phosphorylation de ces résidus est requise pour l’activation de Src et médie le remodelage des jonctions cellules-cellules dépendantes de Src. Ce remodelage induit la perméabilité, l’invasion et la formation de capillaires en réponse au VEGF. Nos résultats démontrent que la phosphorylation de DEP-1 sur résidu tyrosine est requise pour diriger la spécificité de DEP-1 vers son substrat Src. Les travaux révèlent pour la première fois un rôle positif de DEP-1 sur l’induction du programme angiogénique des cellules endothéliales. En plus de la phosphorylation sur tyrosine, DEP-1 est constitutivement phosphorylé sur la thréonine 1318 situé à proximité de la Y1320 en C-terminal. Cette localisation de la T1318 suggère que ce résidu pourrait être impliqué dans la régulation de la Y1320. En effet, nous avons observé que la T1318 de DEP-1 est phosphorylée potentiellement par CK2, et que cette phosphorylation régule la phosphorylation de DEP-1 sur tyrosine et sa capacité de lier et d’activer Src. En accord avec ces résultats, nos travaux révèlent que la surexpression du mutant DEP-1 T1318A diminue le remodelage des jonctions cellules-cellules et par conséquent la perméabilité. Nos résultats suggèrent donc que la T1318 de DEP-1 constitue un nouveau mécanisme de contrôle de la phosphorylation sur tyrosine et que ceci résulte en l’activation de Src et l’induction des fonctions biologiques des cellules endothéliales en réponse au VEGF. Suite à ces travaux dans les cellules endothéliales qui démontrent un rôle positif de DEP-1 dans la médiation des réponses angiogéniques, nous avons voulu approfondir nos connaissances sur l’implication potentielle de DEP-1 dans les cellules cancéreuses où l’activité de Src est requise pour la progression tumorale. Malgré le rôle connu de DEP-1 comme suppresseur tumoral dans différents types de cancer, nous avons émis l’hypothèse que DEP-1 pourrait promouvoir les fonctions biologiques dépendantes de Src telles que la migration et l’invasion dans les cellules cancéreuses. Ainsi, nous avons observé que l’expression de DEP-1 est plus élevée dans les lignées basales de cancer du sein qui sont plus invasives comparativement aux lignées luminales peu invasives. Dans les lignées basales, DEP-1 active Src, médie la motilité cellulaire dépendante de Src et régule la localisation des protéines impliquées dans l’organisation du cytosquelette. L’analyse d’un micro-étalage de tissu a révélé que l’expression de DEP-1 est associée avec une réduction tendencielle de survie des patients. Nos résultats proposent donc, un rôle de promoteur tumoral pour DEP-1 dans la progression du cancer du sein. Les travaux présentés dans cette thèse démontrent pour la première fois que DEP-1 peut agir comme promoteur des réponses angiogéniques et du phénotype pro-invasif des lignées basales du cancer du sein probablement du à sa capacité d’activer Src. Nos résultats suggèrent ainsi que l’expression de DEP-1 pourrait contribuer à la progression tumorale et la formation de métastases. Ces découvertes laissent donc entrevoir que DEP-1 représente une nouvelle cible thérapeutique potentielle pour contrer l’angiogenèse et le développement du cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plusieurs familles de fonctions spéciales de plusieurs variables, appelées fonctions d'orbites, sont définies dans le contexte des groupes de Weyl de groupes de Lie simples compacts/d'algèbres de Lie simples. Ces fonctions sont étudiées depuis près d'un siècle en raison de leur lien avec les caractères des représentations irréductibles des algèbres de Lie simples, mais également de par leurs symétries et orthogonalités. Nous sommes principalement intéressés par la description des relations d'orthogonalité discrète et des transformations discrètes correspondantes, transformations qui permettent l'utilisation des fonctions d'orbites dans le traitement de données multidimensionnelles. Cette description est donnée pour les groupes de Weyl dont les racines ont deux longueurs différentes, en particulier pour les groupes de rang $2$ dans le cas des fonctions d'orbites du type $E$ et pour les groupes de rang $3$ dans le cas de toutes les autres fonctions d'orbites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cette thèse s'intéresse à l'étude des propriétés et applications de quatre familles des fonctions spéciales associées aux groupes de Weyl et dénotées $C$, $S$, $S^s$ et $S^l$. Ces fonctions peuvent être vues comme des généralisations des polynômes de Tchebyshev. Elles sont en lien avec des polynômes orthogonaux à plusieurs variables associés aux algèbres de Lie simples, par exemple les polynômes de Jacobi et de Macdonald. Elles ont plusieurs propriétés remarquables, dont l'orthogonalité continue et discrète. En particulier, il est prouvé dans la présente thèse que les fonctions $S^s$ et $S^l$ caractérisées par certains paramètres sont mutuellement orthogonales par rapport à une mesure discrète. Leur orthogonalité discrète permet de déduire deux types de transformées discrètes analogues aux transformées de Fourier pour chaque algèbre de Lie simple avec racines des longueurs différentes. Comme les polynômes de Tchebyshev, ces quatre familles des fonctions ont des applications en analyse numérique. On obtient dans cette thèse quelques formules de <>, pour des fonctions de plusieurs variables, en liaison avec les fonctions $C$, $S^s$ et $S^l$. On fournit également une description complète des transformées en cosinus discrètes de types V--VIII à $n$ dimensions en employant les fonctions spéciales associées aux algèbres de Lie simples $B_n$ et $C_n$, appelées cosinus antisymétriques et symétriques. Enfin, on étudie quatre familles de polynômes orthogonaux à plusieurs variables, analogues aux polynômes de Tchebyshev, introduits en utilisant les cosinus (anti)symétriques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soit $\displaystyle P(z):=\sum_{\nu=0}^na_\nu z^{\nu}$ un polynôme de degré $n$ et $\displaystyle M:=\sup_{|z|=1}|P(z)|.$ Sans aucne restriction suplémentaire, on sait que $|P'(z)|\leq Mn$ pour $|z|\leq 1$ (inégalité de Bernstein). Si nous supposons maintenant que les zéros du polynôme $P$ sont à l'extérieur du cercle $|z|=k,$ quelle amélioration peut-on apporter à l'inégalité de Bernstein? Il est déjà connu [{\bf \ref{Mal1}}] que dans le cas où $k\geq 1$ on a $$(*) \qquad |P'(z)|\leq \frac{n}{1+k}M \qquad (|z|\leq 1),$$ qu'en est-il pour le cas où $k < 1$? Quelle est l'inégalité analogue à $(*)$ pour une fonction entière de type exponentiel $\tau ?$ D'autre part, si on suppose que $P$ a tous ses zéros dans $|z|\geq k \, \, (k\geq 1),$ quelle est l'estimation de $|P'(z)|$ sur le cercle unité, en terme des quatre premiers termes de son développement en série entière autour de l'origine. Cette thèse constitue une contribution à la théorie analytique des polynômes à la lumière de ces questions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La compréhension de processus biologiques complexes requiert des approches expérimentales et informatiques sophistiquées. Les récents progrès dans le domaine des stratégies génomiques fonctionnelles mettent dorénavant à notre disposition de puissants outils de collecte de données sur l’interconnectivité des gènes, des protéines et des petites molécules, dans le but d’étudier les principes organisationnels de leurs réseaux cellulaires. L’intégration de ces connaissances au sein d’un cadre de référence en biologie systémique permettrait la prédiction de nouvelles fonctions de gènes qui demeurent non caractérisées à ce jour. Afin de réaliser de telles prédictions à l’échelle génomique chez la levure Saccharomyces cerevisiae, nous avons développé une stratégie innovatrice qui combine le criblage interactomique à haut débit des interactions protéines-protéines, la prédiction de la fonction des gènes in silico ainsi que la validation de ces prédictions avec la lipidomique à haut débit. D’abord, nous avons exécuté un dépistage à grande échelle des interactions protéines-protéines à l’aide de la complémentation de fragments protéiques. Cette méthode a permis de déceler des interactions in vivo entre les protéines exprimées par leurs promoteurs naturels. De plus, aucun biais lié aux interactions des membranes n’a pu être mis en évidence avec cette méthode, comparativement aux autres techniques existantes qui décèlent les interactions protéines-protéines. Conséquemment, nous avons découvert plusieurs nouvelles interactions et nous avons augmenté la couverture d’un interactome d’homéostasie lipidique dont la compréhension demeure encore incomplète à ce jour. Par la suite, nous avons appliqué un algorithme d’apprentissage afin d’identifier huit gènes non caractérisés ayant un rôle potentiel dans le métabolisme des lipides. Finalement, nous avons étudié si ces gènes et un groupe de régulateurs transcriptionnels distincts, non préalablement impliqués avec les lipides, avaient un rôle dans l’homéostasie des lipides. Dans ce but, nous avons analysé les lipidomes des délétions mutantes de gènes sélectionnés. Afin d’examiner une grande quantité de souches, nous avons développé une plateforme à haut débit pour le criblage lipidomique à contenu élevé des bibliothèques de levures mutantes. Cette plateforme consiste en la spectrométrie de masse à haute resolution Orbitrap et en un cadre de traitement des données dédié et supportant le phénotypage des lipides de centaines de mutations de Saccharomyces cerevisiae. Les méthodes expérimentales en lipidomiques ont confirmé les prédictions fonctionnelles en démontrant certaines différences au sein des phénotypes métaboliques lipidiques des délétions mutantes ayant une absence des gènes YBR141C et YJR015W, connus pour leur implication dans le métabolisme des lipides. Une altération du phénotype lipidique a également été observé pour une délétion mutante du facteur de transcription KAR4 qui n’avait pas été auparavant lié au métabolisme lipidique. Tous ces résultats démontrent qu’un processus qui intègre l’acquisition de nouvelles interactions moléculaires, la prédiction informatique des fonctions des gènes et une plateforme lipidomique innovatrice à haut débit , constitue un ajout important aux méthodologies existantes en biologie systémique. Les développements en méthodologies génomiques fonctionnelles et en technologies lipidomiques fournissent donc de nouveaux moyens pour étudier les réseaux biologiques des eucaryotes supérieurs, incluant les mammifères. Par conséquent, le stratégie présenté ici détient un potentiel d’application au sein d’organismes plus complexes.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Department of Biotechnology, Cochin University of Science and Technology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The brain with its highly complex structure made up of simple units,imterconnected information pathways and specialized functions has always been an object of mystery and sceintific fascination for physiologists,neuroscientists and lately to mathematicians and physicists. The stream of biophysicists are engaged in building the bridge between the biological and physical sciences guided by a conviction that natural scenarios that appear extraordinarily complex may be tackled by application of principles from the realm of physical sciences. In a similar vein, this report aims to describe how nerve cells execute transmission of signals ,how these are put together and how out of this integration higher functions emerge and get reflected in the electrical signals that are produced in the brain.Viewing the E E G Signal through the looking glass of nonlinear theory, the dynamics of the underlying complex system-the brain ,is inferred and significant implications of the findings are explored.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Department of Statistics, Cochin University of Science and Technology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The focus of this work is to provide authentication and confidentiality of messages in a swift and cost effective manner to suit the fast growing Internet applications. A nested hash function with lower computational and storage demands is designed with a view to providing authentication as also to encrypt the message as well as the hash code using a fast stream cipher MAJE4 with a variable key size of 128-bit or 256-bit for achieving confidentiality. Both nested Hash function and MAJE4 stream cipher algorithm use primitive computational operators commonly found in microprocessors; this makes the method simple and fast to implement both in hardware and software. Since the memory requirement is less, it can be used for handheld devices for security purposes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Bieberbach conjecture about the coefficients of univalent functions of the unit disk was formulated by Ludwig Bieberbach in 1916 [Bieberbach1916]. The conjecture states that the coefficients of univalent functions are majorized by those of the Koebe function which maps the unit disk onto a radially slit plane. The Bieberbach conjecture was quite a difficult problem, and it was surprisingly proved by Louis de Branges in 1984 [deBranges1985] when some experts were rather trying to disprove it. It turned out that an inequality of Askey and Gasper [AskeyGasper1976] about certain hypergeometric functions played a crucial role in de Branges' proof. In this article I describe the historical development of the conjecture and the main ideas that led to the proof. The proof of Lenard Weinstein (1991) [Weinstein1991] follows, and it is shown how the two proofs are interrelated. Both proofs depend on polynomial systems that are directly related with the Koebe function. At this point algorithms of computer algebra come into the play, and computer demonstrations are given that show how important parts of the proofs can be automated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Student’s t-distribution has found various applications in mathematical statistics. One of the main properties of the t-distribution is to converge to the normal distribution as the number of samples tends to infinity. In this paper, by using a Cauchy integral we introduce a generalization of the t-distribution function with four free parameters and show that it converges to the normal distribution again. We provide a comprehensive treatment of mathematical properties of this new distribution. Moreover, since the Fisher F-distribution has a close relationship with the t-distribution, we also introduce a generalization of the F-distribution and prove that it converges to the chi-square distribution as the number of samples tends to infinity. Finally some particular sub-cases of these distributions are considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In dieser Dissertation präsentieren wir zunächst eine Verallgemeinerung der üblichen Sturm-Liouville-Probleme mit symmetrischen Lösungen und erklären eine umfassendere Klasse. Dann führen wir einige neue Klassen orthogonaler Polynome und spezieller Funktionen ein, welche sich aus dieser symmetrischen Verallgemeinerung ableiten lassen. Als eine spezielle Konsequenz dieser Verallgemeinerung führen wir ein Polynomsystem mit vier freien Parametern ein und zeigen, dass in diesem System fast alle klassischen symmetrischen orthogonalen Polynome wie die Legendrepolynome, die Chebyshevpolynome erster und zweiter Art, die Gegenbauerpolynome, die verallgemeinerten Gegenbauerpolynome, die Hermitepolynome, die verallgemeinerten Hermitepolynome und zwei weitere neue endliche Systeme orthogonaler Polynome enthalten sind. All diese Polynome können direkt durch das neu eingeführte System ausgedrückt werden. Ferner bestimmen wir alle Standardeigenschaften des neuen Systems, insbesondere eine explizite Darstellung, eine Differentialgleichung zweiter Ordnung, eine generische Orthogonalitätsbeziehung sowie eine generische Dreitermrekursion. Außerdem benutzen wir diese Erweiterung, um die assoziierten Legendrefunktionen, welche viele Anwendungen in Physik und Ingenieurwissenschaften haben, zu verallgemeinern, und wir zeigen, dass diese Verallgemeinerung Orthogonalitätseigenschaft und -intervall erhält. In einem weiteren Kapitel der Dissertation studieren wir detailliert die Standardeigenschaften endlicher orthogonaler Polynomsysteme, welche sich aus der üblichen Sturm-Liouville-Theorie ergeben und wir zeigen, dass sie orthogonal bezüglich der Fisherschen F-Verteilung, der inversen Gammaverteilung und der verallgemeinerten t-Verteilung sind. Im nächsten Abschnitt der Dissertation betrachten wir eine vierparametrige Verallgemeinerung der Studentschen t-Verteilung. Wir zeigen, dass diese Verteilung gegen die Normalverteilung konvergiert, wenn die Anzahl der Stichprobe gegen Unendlich strebt. Eine ähnliche Verallgemeinerung der Fisherschen F-Verteilung konvergiert gegen die chi-Quadrat-Verteilung. Ferner führen wir im letzten Abschnitt der Dissertation einige neue Folgen spezieller Funktionen ein, welche Anwendungen bei der Lösung in Kugelkoordinaten der klassischen Potentialgleichung, der Wärmeleitungsgleichung und der Wellengleichung haben. Schließlich erklären wir zwei neue Klassen rationaler orthogonaler hypergeometrischer Funktionen, und wir zeigen unter Benutzung der Fouriertransformation und der Parsevalschen Gleichung, dass es sich um endliche Orthogonalsysteme mit Gewichtsfunktionen vom Gammatyp handelt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we solve the duplication problem P_n(ax) = sum_{m=0}^{n}C_m(n,a)P_m(x) where {P_n}_{n>=0} belongs to a wide class of polynomials, including the classical orthogonal polynomials (Hermite, Laguerre, Jacobi) as well as the classical discrete orthogonal polynomials (Charlier, Meixner, Krawtchouk) for the specific case a = −1. We give closed-form expressions as well as recurrence relations satisfied by the duplication coefficients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a similar manner as in some previous papers, where explicit algorithms for finding the differential equations satisfied by holonomic functions were given, in this paper we deal with the space of the q-holonomic functions which are the solutions of linear q-differential equations with polynomial coefficients. The sum, product and the composition with power functions of q-holonomic functions are also q-holonomic and the resulting q-differential equations can be computed algorithmically.