962 resultados para Hare, Robert D.: Snakes in suits


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the plant-beneficial soil bacterium and biocontrol model organism Pseudomonas fluorescens CHA0, the GacS/GacA two-component system upregulates the production of biocontrol factors, i.e. antifungal secondary metabolites and extracellular enzymes, under conditions of slow, non-exponential growth. When activated, the GacS/GacA system promotes the transcription of a small regulatory RNA (RsmZ), which sequesters the small RNA-binding protein RsmA, a translational regulator of genes involved in biocontrol. The gene for a second GacA-regulated small RNA (RsmY) was detected in silico in various pseudomonads, and was cloned from strain CHA0. RsmY, like RsmZ, contains several characteristic GGA motifs. The rsmY gene was expressed in strain CHA0 as a 118 nt transcript which was most abundant in stationary phase, as revealed by Northern blot and transcriptional fusion analysis. Transcription of rsmY was enhanced by the addition of the strain's own supernatant extract containing a quorum-sensing signal and was abolished in gacS or gacA mutants. An rsmA mutation led to reduced rsmY expression, via a gacA-independent mechanism. Overexpression of rsmY restored the expression of target genes (hcnA, aprA) to gacS or gacA mutants. Whereas mutants deleted for either the rsmY or the rsmZ structural gene were not significantly altered in the synthesis of extracellular products (hydrogen cyanide, 2,4-diacetylphloroglucinol, exoprotease), an rsmY rsmZ double mutant was strongly impaired in this production and in its biocontrol properties in a cucumber-Pythium ultimum microcosm. Mobility shift assays demonstrated that multiple molecules of RsmA bound specifically to RsmY and RsmZ RNAs. In conclusion, two small, untranslated RNAs, RsmY and RsmZ, are key factors that relieve RsmA-mediated regulation of secondary metabolism and biocontrol traits in the GacS/GacA cascade of strain CHA0.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In cooperative multiagent systems, agents interac to solve tasks. Global dynamics of multiagent teams result from local agent interactions, and are complex and difficult to predict. Evolutionary computation has proven a promising approach to the design of such teams. The majority of current studies use teams composed of agents with identical control rules ("geneti- cally homogeneous teams") and select behavior at the team level ("team-level selection"). Here we extend current approaches to include four combinations of genetic team composition and level of selection. We compare the performance of genetically homo- geneous teams evolved with individual-level selection, genetically homogeneous teams evolved with team-level selection, genetically heterogeneous teams evolved with individual-level selection, and genetically heterogeneous teams evolved with team-level selection. We use a simulated foraging task to show that the optimal combination depends on the amount of cooperation required by the task. Accordingly, we distinguish between three types of cooperative tasks and suggest guidelines for the optimal choice of genetic team composition and level of selection

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Vitamin D plays a major role in bone metabolism and neuromuscular function. Supplementation with vitamin D is effective to reduce the risk of fall and of fracture. However adherence to oral daily vitamin D supplementation is low. Screening and correcting vitamin D insufficiency in a general rheumatologic population could improve both morbidity and quality of life in these patients with chronic painful disorders and at high risk of osteoporosis. After determining the prevalence of vitamin D deficiency in this population, we evaluated if supplementation with a single high dose of oral 25-OH vitamin D3 was sufficient to correct this abnormality. Methods: During one month (November 2009), levels of 25-OH vitamin D were systematically determined in our rheumatology outpatient clinic and classified into three groups: vitamin D deficiency (<10 μg/l), vitamin D insufficiency (10 to 30 μg/l) or normal vitamin D (>30 μg/l). Patients with insufficiency or deficiency received respectively a single high dose of 300000 IU or 600000 IU oral vitamin D3. In addition, all patients with osteoporosis were prescribed daily supplement of calcium (1 g) and vitamin D (800 IU). 25-OH vitamin D levels were reevaluated after 3 months. Results: Vitamin D levels were initially determined in 292 patients (mean age 53, 211 women, 87% Caucasian). 77% had inflammatory rheumatologic disease (IRD), 20% osteoporosis (OP) and 12% degenerative disease (DD). Vitamin D deficiency was present in 20 (6.8%), while 225 (77.1%) had insufficiency. Of the 245 patients with levels <30 μg/l, a new determination of vitamin D level was available in 173 (71%) at 3 months. Conclusion: Vitamin D insufficiency is highly prevalent in our rheumatologic population (84%), and is not adequately corrected by a single high dose of oral vitamin D3 in more than half of the patients with IRD and DD. In patients with OP, despite association of a single high dose with daily oral vitamin D supplementation, 40% of patients are still deficient when reevaluated at 3 months.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuron-astrocyte reciprocal communication at synapses has emerged as a novel signalling pathway in brain function. Astrocytes sense the level of synaptic activity and, in turn, influence its efficacy through the regulated release of 'gliotransmitters' such as glutamate, ATP or D-serine. A calcium-dependent exocytosis is proposed to drive the release of gliotransmitters but its existence is still debated. Over the last years, we have been studying the molecular determinants governing D-serine release from glia using different approaches. Using a novel bioassay for D-serine, we have been able to show that D-serine release occurs mainly through a calcium- and SNARE proteindependent mechanism just supporting the idea that this amino acid is released by exocytosis from glia. We next have pursued our exploration by confocal imaging and tracking of the exocytotic routes for Dserine- mediated gliotransmission and have shown that D-serine releasable pools are confined to synaptobrevin2/cellubrevin-bearing vesicles. To shed light onto the mechanisms controlling the storage and the release of gliotransmitters and namely D-serine, we have developed a new method for the immunoisolation of synaptobrevin 2- positive vesicles from rat cortical astrocytes in culture while preserving their content in gliotransmitters. The purified organelles are clear round shape vesicles of excellent purity with homogeneous size (40 nm) as judged by electron microscopy. Immunoblotting analysis revealed that isolated vesicles contain most of the major proteins already described for neuron-derived vesicles like synaptic vesicle protein 2 (SV2) and the proton pump H?-ATPase. In addition, we have analyzed the content for various amino acids of these vesicles by means of chiral capillary electrophoresis coupled to laser-induced fluorescence detection. The purified vesicles contain large amount of D-serine. We also detect peaks corresponding to unidentified compounds that may correspond to others amino acids. Postembedding immunogold labelling of the rat neocortex further revealed the expression of D-serine in astrocytes processes contacting excitatory synapses. Finally, we have examined the uptake properties for Dserine and glutamate inside the isolated glial vesicles. Our results provide significant support for the existence of an uptake system for D-serine in secretory glial vesicles and for the storage of chemical substances like D-serine and glutamate. 11th International Congress on Amino Acids, Peptides and Proteins 763 123

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Vitamin D plays a major role in bone metabolism and neuromuscular function. Supplementation with vitamin D is effective to reduce the risk of fall and of fracture. However adherence to oral daily vitamin D supplementation is low. Screening and correcting vitamin D insufficiency in a general rheumatologic population could improve both morbidity and quality of life in these patients with chronic painful disorders and at high risk of osteoporosis. After determining the prevalence of vitamin D deficiency in this population, we evaluated if supplementation with a single high dose of oral 25-OH vitamin D3 was sufficient to correct this abnormality. Methods: During one month (November 2009), levels of 25-OH vitamin D were systematically determined in our rheumatology outpatient clinic and classified into three groups: vitamin D deficiency (<10 µg/l), vitamin D insufficiency (10 to 30µg/l) or normal vitamin D (>30 µg/l). Patients with insufficiency or deficiency received respectively a single high dose of 300'000 IU or 600'000 IU oral vitamin D3. In addition, all patients with osteoporosis were prescribed daily supplement of calcium (1g) and vitamin D (800 IU). 25-OH vitamin D levels were reevaluated after 3 months. Results: Vitamin D levels were initially determined in 292 patients (mean age 53, 211 women, 87% Caucasian). 77% had inflammatory rheumatologic disease (IRD), 20% osteoporosis (OP) and 12% degenerative disease (DD). Vitamin D deficiency was present in 20 (6.8%), while 225 (77.1%) had insufficiency. Of the 245 patients with levels <30µg/l, a new determination of vitamin D level was available in 173 (71%) at 3 months (table 1). Conclusion: Vitamin D insufficiency is highly prevalent in our rheumatologic population (84%), and is not adequately corrected by a single high dose of oral vitamin D3 in more than half of the patients with IRD and DD. In patients with OP, despite association of a single high dose with daily oral vitamin D supplementation, 40% of patients are still deficient when reevaluated at 3 months.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In many Gram-negative bacteria, the GacS/GacA two-component system positively controls the expression of extracellular products or storage compounds. In the plant-beneficial rhizosphere bacterium Pseudomonas fluorescens CHA0, the GacS/GacA system is essential for the production of antibiotic compounds and hence for biological control of root-pathogenic fungi. The small (119-nt) RNA RsmX discovered in this study, together with RsmY and RsmZ, forms a triad of GacA-dependent small RNAs, which sequester the RNA-binding proteins RsmA and RsmE and thereby antagonize translational repression exerted by these proteins in strain CHA0. This small RNA triad was found to be both necessary and sufficient for posttranscriptional derepression of biocontrol factors and for protection of cucumber from Pythium ultimum. The same three small RNAs also positively regulated swarming motility and the synthesis of a quorum-sensing signal, which is unrelated to N-acyl-homoserine lactones, and which autoinduces the Gac/Rsm cascade. Expression of RsmX and RsmY increased in parallel throughout cell growth, whereas RsmZ was produced during the late growth phase. This differential expression is assumed to facilitate fine tuning of GacS/A-controlled cell population density-dependent regulation in P. fluorescens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and aims: V itamin D is an important modulator o fnumerous c ellular processes, including innate and adaptive immunepathways. A recent large-scale genetic validation study performed withinthe framework of the Swiss Hepatitis C Cohort S tudy has demonstratedan association between t he 1α-hydroxylase promoter single nucleotidepolymorphism CYP27B1-1260 rs10877012 and sustained virologicresponse (SVR) after pegylated interferon-α ( PEG-IFN-α) plus ribavirintreatment of c hronic hepatitis C in patients w ith a p oor-response IL28Bgenotype. This suggests an intrinsic role o f vitamin D signaling in theresponse t o treatment of chronic hepatitis C, especially in patients withlimited sensitivity to IFN-α. In the present study, we investigated theeffect of 1,25-(OH)2 v itamin D3 (calcitriol) alone or in combination withIFN-α on the hepatitis C virus (HCV) life cycle in vitro.Methods: H uh-7.5 cells harboring Con1- or JFH-1-derived HCVreplicons or cell culture-derived HCV were exposed to 0.1-100 nMcalcitriol ± 1 -100 IU/ml IFN-α. The effect on HCV RNA replication andviral particle production was investigated by quantitative r eal-time PCR,immunoblot analyses, and infectivity titration analyses. The expression ofinterferon-stimulated genes (ISGs) and of calcitriol target genes wasassessed by quantitative real-time PCR.Results: Calcitriol had no relevant effect on the viability of Huh-7.5 cells.Calcitriol strongly induced and repressed the expression of the calcitrioltarget genes CYP24A1 and CCNC, respectively, confirming that Huh-7.5cells c an respond to c alcitriol signaling. P hysiological doses of calcitrioldid not significantly a ffect HCV RNA replication or i nfectious particleproduction in vitro, and calcitriol alone h ad no significant effect on theexpression of several ISGs. However, calcitriol in combination with IFN-αsubstantially increased the expression of ISGs compared to IFN-α alone.In addition, calcitriol plus IFN-α s ynergistically inhibited HCV RNAreplication.Conclusions: C alcitriol at physiological concentrations and IFN-α a ctsynergistically on the expression of I SGs and HCV RNA replication i nvitro. Experiments exploring the underlying mechanisms are underway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the biocontrol strain Pseudomonas fluorescens CHA0, the Gac/Rsm signal transduction pathway positively controls the synthesis of antifungal secondary metabolites and exoenzymes. In this way, the GacS/GacA two-component system determines the expression of three small regulatory RNAs (RsmX, RsmY, and RsmZ) in a process activated by the strain's own signal molecules, which are not related to N-acyl-homoserine lactones. Transposon Tn5 was used to isolate P. fluorescens CHA0 insertion mutants that expressed an rsmZ-gfp fusion at reduced levels. Five of these mutants were gacS negative, and in them the gacS mutation could be complemented for exoproduct and signal synthesis by the gacS wild-type allele. Furthermore, two thiamine-auxotrophic (thiC) mutants that exhibited decreased signal synthesis in the presence of 5 x 10(-8) M thiamine were found. Under these conditions, a thiC mutant grew normally but showed reduced expression of the three small RNAs, the exoprotease AprA, and the antibiotic 2,4-diacetylphloroglucinol. In a gnotobiotic system, a thiC mutant was impaired for biological control of Pythium ultimum on cress. Addition of excess exogenous thiamine restored all deficiencies of the mutant. Thus, thiamine appears to be an important factor in the expression of biological control by P. fluorescens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the metabolically versatile bacterium Pseudomonas aeruginosa, the RNA-binding protein Crc is involved in catabolite repression of a range of degradative genes, such as amiE (encoding aliphatic amidase). We found that a CA-rich sequence (termed CA motif) in the amiE translation initiation region was important for Crc binding. The small RNA CrcZ (407 nt) containing 5 CA motifs was able to bind the Crc protein with high affinity and to remove it from amiE mRNA in vitro. Overexpression of crcZ relieved catabolite repression in vivo, whereas a crcZ mutation pleiotropically prevented the utilization of several carbon sources. The sigma factor RpoN and the CbrA/CbrB two-component system, which is known to maintain a healthy carbon-nitrogen balance, were necessary for crcZ expression. During growth on succinate, a preferred carbon source, CrcZ expression was low, resulting in catabolite repression of amiE and other genes under Crc control. By contrast, during growth on mannitol, a poor carbon source, elevated CrcZ levels correlated with relief of catabolite repression. During growth on glucose, an intermediate carbon source, CrcZ levels and amiE expression were intermediate between those observed in succinate and mannitol media. Thus, the CbrA-CbrB-CrcZ-Crc system allows the bacterium to adapt differentially to various carbon sources. This cascade also regulated the expression of the xylS (benR) gene, which encodes a transcriptional regulator involved in benzoate degradation, in an analogous way, confirming this cascade's global role.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Obesity is associated with vitamin D deficiency, and both are areas of active public health concern. We explored the causality and direction of the relationship between body mass index (BMI) and 25-hydroxyvitamin D [25(OH)D] using genetic markers as instrumental variables (IVs) in bi-directional Mendelian randomization (MR) analysis. METHODS AND FINDINGS: We used information from 21 adult cohorts (up to 42,024 participants) with 12 BMI-related SNPs (combined in an allelic score) to produce an instrument for BMI and four SNPs associated with 25(OH)D (combined in two allelic scores, separately for genes encoding its synthesis or metabolism) as an instrument for vitamin D. Regression estimates for the IVs (allele scores) were generated within-study and pooled by meta-analysis to generate summary effects. Associations between vitamin D scores and BMI were confirmed in the Genetic Investigation of Anthropometric Traits (GIANT) consortium (n = 123,864). Each 1 kg/m(2) higher BMI was associated with 1.15% lower 25(OH)D (p = 6.52×10⁻²⁷). The BMI allele score was associated both with BMI (p = 6.30×10⁻⁶²) and 25(OH)D (-0.06% [95% CI -0.10 to -0.02], p = 0.004) in the cohorts that underwent meta-analysis. The two vitamin D allele scores were strongly associated with 25(OH)D (p≤8.07×10⁻⁵⁷ for both scores) but not with BMI (synthesis score, p = 0.88; metabolism score, p = 0.08) in the meta-analysis. A 10% higher genetically instrumented BMI was associated with 4.2% lower 25(OH)D concentrations (IV ratio: -4.2 [95% CI -7.1 to -1.3], p = 0.005). No association was seen for genetically instrumented 25(OH)D with BMI, a finding that was confirmed using data from the GIANT consortium (p≥0.57 for both vitamin D scores). CONCLUSIONS: On the basis of a bi-directional genetic approach that limits confounding, our study suggests that a higher BMI leads to lower 25(OH)D, while any effects of lower 25(OH)D increasing BMI are likely to be small. Population level interventions to reduce BMI are expected to decrease the prevalence of vitamin D deficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the plant-beneficial soil bacterium Pseudomonas fluorescens CHA0, the production of biocontrol factors (antifungal secondary metabolites and exoenzymes) is controlled at a posttranscriptional level by the GacS/GacA signal transduction pathway involving RNA-binding protein RsmA as a key regulatory element. This protein is assumed to bind to the ribosome-binding site of target mRNAs and to block their translation. RsmA-mediated repression is relieved at the end of exponential growth by two GacS/GacA-controlled regulatory RNAs RsmY and RsmZ, which bind and sequester the RsmA protein. A gene (rsmE) encoding a 64-amino-acid RsmA homolog was identified and characterized in strain CHA0. Overexpression of rsmE strongly reduced the expression of target genes (hcnA, for a hydrogen cyanide synthase subunit; aprA, for the main exoprotease; and phlA, for a component of 2,4-diacetylphloroglucinol biosynthesis). Single null mutations in either rsmA or rsmE resulted in a slight increase in the expression of hcnA, aprA, and phlA. By contrast, an rsmA rsmE double mutation led to strongly increased and advanced expression of these target genes and completely suppressed a gacS mutation. Both the RsmE and RsmA levels increased with increasing cell population densities in strain CHA0; however, the amount of RsmA showed less variability during growth. Expression of rsmE was controlled positively by GacA and negatively by RsmA and RsmE. Mobility shift assays demonstrated specific binding of RsmE to RsmY and RsmZ RNAs. The transcription and stability of both regulatory RNAs were strongly reduced in the rsmA rsmE double mutant. In conclusion, RsmA and RsmE together account for maximal repression in the GacS/GacA cascade of strain CHA0.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Pseudomonas fluorescens CHA0, an antagonist of root-pathogenic fungi, the GacS/GacA two-component system tightly controls the expression of antifungal secondary metabolites and exoenzymes at a posttranscriptional level, involving the RNA-binding protein and global regulator of secondary metabolism RsmA. This protein was purified from P. fluorescens, and RNA bound to it was converted to cDNA, which served as a probe to isolate the corresponding chromosomal locus, rsmZ. This gene encoded a regulatory RNA of 127 nucleotides and a truncated form lacking 35 nucleotides at the 3' end. Expression of rsmZ depended on GacA, increased with increasing population density, and was stimulated by the addition of a solvent-extractable extracellular signal produced by strain CHA0 at the end of exponential growth. This signal appeared to be unrelated to N-acyl-homoserine lactones. A conserved upstream element in the rsmZ promoter, but not the stress sigma factor RpoS, was involved in rsmZ expression. Overexpression of rsmZ effectively suppressed the negative effect of gacS and gacA mutations on target genes, i.e., hcnA (for hydrogen cyanide synthase) and aprA (for the major exoprotease). Mutational inactivation of rsmZ resulted in reduced expression of these target genes in the presence of added signal. Overexpression of rsmA had a similar, albeit stronger negative effect. These results support a model in which GacA upregulates the expression of regulatory RNAs, such as RsmZ of strain CHA0, in response to a bacterial signal. By a titration effect, RsmZ may then alleviate the repressing activity of RsmA on the expression of target mRNAs.