974 resultados para Halides--Spectra.
Resumo:
A new practical experiment involving silver and gold nanoparticle syntheses was introduced in an inorganic chemistry laboratory course for undergraduate students at the Institute of Chemistry, UNICAMP. The nanoparticles were synthesized by the reduction of silver nitrate and tetrachloroauric acid with sodium borohydride and sodium citrate in an aqueous medium. Stabilities of the suspensions were tested using several different reactants including sodium chloride, polyvinylpyrrolidone, polyvinyl alcohol and cistamine. Changes in optical properties were observed by electronic spectra and also by transmission electronic microscopy, which also yielded data for estimating particle size.
Resumo:
O objetivo deste trabalho foi o estudo do efeito do Grau de Hidrólise (GH) do poli(vinil álcool) (PVA) nas propriedades dos filmes à base de blendas de gelatina suína e PVA com dois GH. Os filmes foram produzidos com soluções com 2 g de macromoléculas/100 g de solução, contendo 23,1 g de PVA.100 g-1 de macromoléculas e 25 g de glicerol/100 g de macromoléculas. As propriedades mecânicas e térmicas, cor, opacidade, umidade e solubilidade, além de espectros de infravermelho com transformada de Fourier (FTIR) dos filmes, foram estudadas. As soluções foram analisadas por reometria dinâmica. Os filmes produzidos com o PVA de menor GH foram mais higroscópicos e mais solúveis. Mas o tipo de PVA não afetou a cor, afetando a opacidade e o brilho dos filmes. O PVA com maior GH proporcionou filmes mais resistentes, e o PVA de menor GH produziu filmes mais resistentes à tração, embora menos deformáveis na perfuração. O GH do PVA não afetou a temperatura de transição vítrea dos filmes, determinada na primeira varredura, mas a afetou na segunda varredura. Os resultados das análises de FTIR corroborraram com esses resultados. As propriedades viscoelásticas das soluções não foram afetadas pelo GH do PVA, muito possivelmente por se tratar de soluções diluídas.
Resumo:
Yellow passion fruit pulp is unstable, presenting phase separation that can be avoided by the addition of hydrocolloids. For this purpose, xanthan and guar gum [0.3, 0.7 and 1.0% (w/w)] were added to yellow passion fruit pulp and the changes in the dynamic and steady - shear rheological behavior evaluated. Xanthan dispersions showed a more pronounced pseudoplasticity and the presence of yield stress, which was not observed in the guar gum dispersions. Cross model fitting to flow curves showed that the xanthan suspensions also had higher zero shear viscosity than the guar suspensions, and, for both gums, an increase in temperature led to lower values for this parameter. The gums showed different behavior as a function of temperature in the range of 5 - 35ºC. The activation energy of the apparent viscosity was dependent on the shear rate and gum concentration for guar, whereas for xanthan these values only varied with the concentration. The mechanical spectra were well described by the generalized Maxwell model and the xanthan dispersions showed a more elastic character than the guar dispersions, with higher values for the relaxation time. Xanthan was characterized as a weak gel, while guar presented a concentrated solution behavior. The simultaneous evaluation of temperature and concentration showed a stronger influence of the polysaccharide concentration on the apparent viscosity and the G' and G" moduli than the variation in temperature.
Resumo:
We report magnetic and EPR (electron paramagnetic resonance) spectroscopy studies of [Cu2(flu)4(dmf)2] (flu = flufenamate and dmf = dimethylformamide), which has CuII ions in tetracarboxylate "paddle wheel" dinuclear units. Susceptibility measurements at 10 < T < 275 K allowed the evaluation of an antiferromagnetic intradinuclear exchange coupling J0 = -294 ± 5 cm-1 between CuII ions (Hex = "J0 S1·S2). EPR experiments at 300 K in powder and single-crystals at 9.5 and 34.4 GHz indicated g// = 2.373, g⊥ = 2.073 and zero field splitting parameters D = (-0.334 ± 0.001) cm"1 and E ca. 0. EPR signal intensity measurements at X-band in the range 4 < T < 295 K indicated that J0 = "283 ± 5 cm"1. A higher limit |J´| < 5×10-3 cm-1 for the interdinuclear exchange coupling between neighbor units at ca.14.24 Å was estimated from the angular variation of the single crystal spectra around the magic angles. The results are discussed in terms of the structure of the dinuclear unit and the bridges connecting CuII ions and compared with values reported for similar compounds.
Resumo:
This article describes a projection spectrograph for use in optical spectroscopy classrooms demonstrations. The apparatus is based on an overhead projector and permits the visualization of several phenomena such as, light dispersion by diffraction gratings, diffraction order, optical fluorescence, continuous and discrete optical emission spectra, and light absorption by liquids and solids. A historical survey about the optical spectroscopy development is also presented.
Resumo:
The Steady-State Free Precession (SSFP) sequence has been widely used in low-field and low-resolution imaging NMR experiments to increase the signal-to-noise ratio (s/n) of the signals. Here, we analyzed the Scrambled Steady State - SSS and Unscrambled Steady State - USS sequences to suppress phase anomalies and sidebands of the 13C NMR spectrum acquired in the SSFP regime. The results showed that the application of the USS sequence allowed a uniform distribution of the time interval between pulses (Tp), in the established time range, allowing a greater suppression of phase anomalies and sidebands, when compared with the SSS sequence.
Resumo:
The study of tokamak plasma light emissions in the vacuum ultraviolet (VUV) region is an important subject since many impurity spectral emissions are present in this region. These spectral emissions can be used to determine the plasma ion temperature and density from different species and spatial positions inside plasma according to their temperatures. We have analyzed VUV spectra from 500 Å to 3200 Å wavelength in the TCABR tokamak plasma including higher diffraction order emissions. There have been identified 37 first diffraction order emissions, resulting in 28 second diffraction order, 24 third diffraction order, and 7 fourth diffraction order lines. The emissions are from impurity species such as OII, OIII, OIV, OV, OVI, OVII, CII, CIII, CIV, NIII, NIV, and NV. All the spectra beyond 1900 Å are from higher diffraction order emissions, and possess much better spectral resolution. Each strong and isolated spectral line, as well as its higher diffraction order emissions suitable for plasma diagnostic is identified and discussed. Finally, an example of ion temperature determination using different diffraction order is presented.
Resumo:
The absorption spectra of DPH at fixed concentration do not change with water content in organic solvents. It exhibits monomer bands, such as those obtained in ethanol. The absorption did not change for solutions up to 54 and 46% of water in ethanol and DMSO, respectively, for [DPH] = 5.0 × 10-6 mol L-1 at 30 °C. However, at the same experimental conditions, a gradual sharp decay of the DPH fluorescence is observed. It is proposed that water molecules below these water concentration limits act as quenchers of the excited states of DPH. Stern-Volmer quenching constants by intensities measurements are 7.4 × 10-2 (water/ethanol) and 2.6 × 10-2 L mol-1 (water/DMSO). DPH lifetime measurements in the absence and presence of water resulted in 7.1 × 10-2 L mol-1 in water/ethanol, which pointed out that the process is a dynamic quenching by water molecules. For experiments using DPH as probe, this process can affect data, leading to misunderstanding interpretation.
Resumo:
This paper introduces the basics of peptide mass spectra interpretation applied to proteomics and is directed to chemists, biochemists and biologists. The manuscript presents a well detailed protocol aiming to serve as a first choice guide for understanding peptide sequencing. The tutorial was elaborated based on both a thorough bibliographic revision and the author's experience. In order to prove the applicability of the proposed guide, spectra obtained on different instruments have been successfully interpreted by applying the presented rational.
Resumo:
This work reports the photophysical properties (excitation and fluorescence spectra, fluorescence quantum yield, fluorescence lifetimes) of the poly(2,7-9,9'-dihexylfluorene-dyil) in dilute solutions of four solvents (toluene, tetrahydrofuran, chloroform and ethyl acetate) as well as the properties in solid state. Photoluminescence showed spectra characteristic of disordered α-backbone chain conformation. Simulation of the electronic absorption spectra of oligomers containing 1 to 11 mers showed that the critical conjugation length is between 6 and 7 mers. We also estimated the theoretical dipole moments which indicated that a coil conformation is formed with 8 repeating units per turn. We also showed that some energy transfer process appears in solid state which decreases the emission lifetime. Furthermore, based on luminescent response of the systems herein studied and electroluminescent behavior reported on literature, both photo and electroluminescence emissions arise from the same emissive units.
Resumo:
The effects of solvents on chemical phenomena is complex because there are various solute-solvent interaction mechanisms. Solvatochromism refers to the effects of solvents on the spectra of probes. The study of this phenomenon sheds light on the relative importance of the solvation mechanisms. Solvation in pure solvents is quantitatively analyzed in terms of a multi-parameter equation. In binary solvent mixtures, solvation is analyzed by considering the organic solvent, S, water, W, and a 1:1 hydrogen bonded species (S-W). The applications of solvatochromism to understand distinct chemical phenomena, reactivity and swelling of cellulose, is briefly discussed.
Resumo:
This work reports on the SERS activity of a nanostructured substrate that was obtained by electrodepositing gold over a template consisting of polystyrene microspheres. This substrate displayed superior SERS performance for the detection of 4-merctaptopyridine as compared to a conventional roughened Au electrode. In order to investigate the substrate capability for the detection at low concentration limits, a series of Rhodamine 6G (1 nM) spectra were registered. Our spectral dynamics data is in agreement with single-molecule behavior, showing that the control over the substrate morphology is crucial to enable the production of highly reproducible and sensitive SERS substrates.
Resumo:
Iodine vapor is a very suitable substance to learn about molecular energy levels and transitions, and to introduce spectroscopic techniques. As a diatomic molecule its spectra are relatively simple and allow straightforward treatment of the data leading to the potential energy curves and to quantum mechanics concepts. The overtone bands, in the resonance Raman scattering, and the band progressions, in the electronic spectra, play an important role in the calculation of the Morse potential curves for the fundamental and excited electronic state. A weaker chemical bond in the electronic excited state, compared to the fundamental state, is evidenced by the increase in the equilibrium interatomic distance. The resonance Raman scattering of I2 is highlighted due to its importance for obtaining the anharmonicity constant in the fundamental electronic state.
Resumo:
The increasing demand for fatty acid-free lecithin required modifications in existing purification methods. In this technical note we describe a purification procedure with the following steps: a) homogenization and extraction of yolks obtained from fresh eggs with acetone, b) solubilization with ethanol and solvent elimination and c) repeated solubilization/precipitation with petroleum ether/acetone. This crude extract was chromatographed on neutral alumina, which was exhaustively washed with chloroform before elution with chloroform:methanol, allowing the sequential separation of fatty acids and lecithin. Chromatographic behavior and mass spectra of the product are presented. This fast procedure yields fatty acid-free lecithin at a competitive cost.
Resumo:
The volatile compounds of raw and extruded bovine rumen, extracted by dynamic headspace, were separated by gas chromatography and analyzed by GC-MS. Raw and extruded materials presented thirty-two volatile compounds. The following compounds were identified in raw bovine rumen: heptane, 1-heptene, 4-methyl-2-pentanone, toluene, hexanal, ethyl butyrate, o-xylene, m-xylene, p-xylene, heptanal, limonene, nonanal, dodecane, tridecane, tetradecane, pentadecane, hexadecane, heptadecane and octadecane. The following compounds were identified in the extruded material: 1-heptene, 2,4-dimethylhexane, toluene, limonene, undecane, tetradecane, pentadecane, hexadecane, heptadecane, octadecane and nonadecane. Mass spectra of some unidentified compounds indicated the presence of hydrocarbons with branched chains or cyclic structure.