976 resultados para HR- CS GF AAS
Resumo:
A Research Project involving two, three, four and five inches of bonded Portland Cement Concrete Overlay on a 1.3 mile Portland Cement Concrete pavement was conducted in Clayton County, Iowa, during September, 1977, centering on the following objectives: 1. Determine the mixing and proportioning procedures required in using a conventional, central mix proportioning plant to produce a dense Portland Cement Concrete mixture using standard mixes with super-water reducing admixtures; 2. Determine the economics, longevity and maintenance performance of a bonded, thin-lift, non-reinforced Portland Cement Concrete resurfacing course using conventional procedures, equipment and concrete paving mixtures both with and without super-water reducing admixtures; 3. Determine if an adequate bond between the existing pavement and an overlay of thin-lift, dense, non-reinforced Portland Cement Concrete can be obtained with only special surface cleaning and no surface removal or grinding.
Resumo:
As part of the overall research program of evaluating asphalt emulsion slurry seal as a pavement maintenance material, 31 duplicate 500-ft test sections were constructed on U.S. 6 between Adel and Waukee in Dallas County during September and October of 1978. These test sections included combinations of eight aggregates, two gradings, three asphalt emulsions, two mineral fillers, and a range of emulsion contents determined by laboratory mix designs. The emulsion contents of the test sections varied from 10.3% for Section 7A (Ferguson coarse) to 32.9% for Section 31A (lightweight aggregate). The post-construction performance evaluation of the test sections, consisting primarily of the friction tests and surface appearance observations, was conducted at different time intervals up to 24 months after construction. At the 24-month final evaluation, most of the test sections had carried a total of 1.4 million vehicles.
Resumo:
When a material fails under a number of repeated loads, each smaller than the ultimate static strength, a fatigue failure is said to have taken place. Many studies have been made to characterize the fatigue behavior of various engineering materials. The results of some of these studies have proved invaluable in the evaluation and prediction of the fatigue strength of structural materials. Considerable time and effort have gone into the evaluation of the fatigue behavior of metals. These early studies were motivated by practical considerations: the first fatigue tests were performed on materials that had been observed to fail after repeated loading of a magnitude less than that required for failure under the application of a single load. Mine-hoist chains (1829), railway axles (1852), and steam engine parts were among the first structural components to be recognized as exhibiting fatigue behavior. Since concrete is usually subjected to static loading rather than cyclic loading, need for knowledge of the fatigue behavior of concrete has lagged behind that of metals. One notable exception to this, however, is in the area of highway and airfield pavement design. Due to the fact that the fatigue behavior of concrete must be understood in the design of pavements and reinforced concrete bridges, highway engineers have provided the motivation for concrete fatigue studies since the 1920s.
Resumo:
The earliest overall comprehensive work on the use of fly ash in concrete was reported by Davis and Associates of the University of California in 1937. Since that time, there have been numerous applications of the use and varying propertions of fly ash in portland cement concrete mixes. Fly ash is a pozzolanic powdery by-product of the coal combustion process which is recovered from flue gases and is, generally associated with electric power generating plants. Environmental regulations enacted in recent years have required that fly ash be removed from the flue gases to maintain clean air standards. This has resulted in an increased volume of high quality fly ash that is considered a waste product or a by-product that can be utilized in products such as portland cement concrete. There are several sources of the high quality fly ash located in Iowa currently producing a combined total of 281,000 tons of material annually.
Resumo:
Since the turn of the century, tributaries to the Missouri River in western Iowa have entrenched their channels to as much as six times their original depth. This channel degradation is accompanied by widening as the channel side slopes become unstable and landslides occur. The deepening and widening of these streams have endangered about 25% of the highway bridges in 13 counties [Lohnes et al. 1980]. Grade stabilization structures have been recommended as the most effective remedial measure for stream degradation [Brice et al., 1978]. In western Iowa, within the last seven years, reinforced concrete grade stabilization structures have cost between $300,000 and $1,200,000. Recognizing that the high cost of these structures may be prohibitive in many situations, the Iowa Department of Transportation (Iowa DOT) sponsored a study at Iowa State University (ISU) to find low-cost alternative structures. This was Phase I of the stream degradation study. Analytical and laboratory work led to the conclusion that alternative construction materials such as gabions and soil-cement might result in more economical structures [Lohnes et al. 1980]. The ISU study also recommended that six experimental structures be built and their performance evaluated. Phase II involved the design of the demonstration structures, and Phase III included monitoring and evaluating their performance.
Resumo:
Since the beginning of channel straightening at the turn of the century, the streams of western Iowa have degraded 1.5 to 5 times their original depth. This vertical degradation is often accompanied by increases in channel widths of 2 to 4 times the original widths. The deepening and widening of these streams has jeopardized the structural safety of many bridges by undercutting footings or pile caps, exposing considerable length of piling, and removing soil beneath and adjacent to abutments. Various types of flume and drop structures have been introduced in an effort to partially or totally stabilize these channels, protecting or replacing bridge structures. Although there has always been a need for economical grade stabilization structures to stop stream channel degradation and protect highway bridges and culverts, the problem is especially critical at the present time due to rapidly increasing construction costs and decreasing revenues. Benefits derived from stabilization extend beyond the transportation sector to the agricultural sector, and increased public interest and attention is needed.
Resumo:
Quality granular materials suitable for building all-weather roads are not uniformly distributed throughout the state of Iowa. For this reason the Iowa Highway Research Board has sponsored a number of research programs for the purpose of developing new and effective methods for making use of whatever materials are locally available. This need is ever more pressing today due to the decreasing availability of road funds and quality materials, and the increasing costs of energy and all types of binder materials. In the 1950s, Professor L. H. Csanyi of Iowa State University had demonstrated both in the laboratory and in the field, in Iowa and in a number of foreign countries, the effectiveness of preparing low cost mixes by stabilizing ungraded local aggregates such as gravel, sand and loess with asphalt cements using the foamed asphalt process. In this process controlled foam was produced by introducing saturated steam at about 40 psi into heated asphalt cement at about 25 psi through a specially designed and properly adjusted nozzle. The reduced viscosity and the increased volume and surface energy in the foamed asphalt allowed intimate coating and mixing of cold, wet aggregates or soils. Through the use of asphalt cements in a foamed state, materials normally considered unsuitable could be used in the preparation of mixes for stabilized bases and surfaces for low traffic road construction. By attaching the desired number of foam nozzles, the foamed asphalt can be used in conjunction with any type of mixing plant, either stationary or mobile, batch or continuous, central plant or in-place soil stabilization.
Resumo:
Research was undertaken, sponsored by the Iowa Department of Transportation, to identify specific locations where rumble strips could be expected to improve highway safety. The objective of the research was to recommend warrants for their use on rural highways. An inventory of rumble strip installations on the rural highway systems in the state was conducted in 1981. A total of 685 installations was reported on secondary roads and 147 on primary highways. Over 97 percent of these were in advance of stop signs at. intersections. Most of the other installations were in advance of railroad grade crossings. The accident experience with and without rumble strips was compared in two ways. A before-and-after comparison was made for the same location if accident records were available for at least one full year both preceding and following the installation of rumble strips. Accident records for this purpose were available from a statewide computerized record system covering the period from 1977 through 1980. The accident experience at locations having rumble strips installed before 1978 was compared with a sample of comparable locations not having rumble strips.
Resumo:
Due to frequent accidental damage to prestressed concrete (P/C) bridges caused by impact from overheight vehicles, a project was initiated to evaluate the strength and load distribution characteristics of damaged P/C bridges. A comprehensive literature review was conducted. It was concluded that only a few references pertain to the assessment and repair of damaged P/C beams. No reference was found that involves testing of a damaged bridge(s) as well as the damaged beams following their removal. Structural testing of two bridges was conducted in the field. The first bridge tested, damaged by accidental impact, was the westbound (WB) I-680 bridge in Beebeetown, Iowa. This bridge had significant damage to the first and second beams consisting of extensive loss of section and the exposure of numerous strands. The second bridge, the adjacent eastbound (EB) structure, was used as a baseline of the behavior of an undamaged bridge. Load testing concluded that a redistribution of load away from the damaged beams of the WB bridge was occurring. Subsequent to these tests, the damaged beams in the WB bridge were replaced and the bridge retested. The repaired WB bridge behaved, for the most part, like the undamaged EB bridge indicating that the beam replacement restored the original live load distribution patterns. A large-scale bridge model constructed for a previous project was tested to study the changes in behavior due to incrementally applied damage consisting initially of only concrete removal and then concrete removal and strand damage. A total of 180 tests were conducted with the general conclusion that for exterior beam damage, the bridge load distribution characteristics were relatively unchanged until significant portions of the bottom flange were removed along with several strands. A large amount of the total applied moment to the exterior beam was redistributed to the interior beam of the model. Four isolated P/C beams were tested, two removed from the Beebeetown bridge and two from the aforementioned bridge model. For the Beebeetown beams, the first beam, Beam 1W, was tested in an "as removed" condition to obtain the baseline characteristics of a damaged beam. The second beam, Beam 2W, was retrofit with carbon fiber reinforced polymer (CFRP) longitudinal plates and transverse stirrups to strengthen the section. The strengthened Beam was 12% stronger than Beam 1W. Beams 1 and 2 from the bridge model were also tested. Beam 1 was not damaged and served as the baseline behavior of a "new" beam while Beam 2 was damaged and repaired again using CFRP plates. Prior to debonding of the plates from the beam, the behavior of both Beams 1 and 2 was similar. The retrofit beam attained a capacity greater than a theoretically undamaged beam prior to plate debonding. Analytical models were created for the undamaged and damaged center spans of the WB bridge; stiffened plate and refined grillage models were used. Both models were accurate at predicting the deflections in the tested bridge and should be similarly accurate in modeling other P/C bridges. The moment fractions per beam were computed using both models for the undamaged and damaged bridges. The damaged model indicates a significant decrease in moment in the damaged beams and a redistribution of load to the adjacent curb and rail as well as to the undamaged beam lines.
Resumo:
Chloride-ions penetrating into bridge decks and corroding the steel have been a major problem. As the steel corrodes it exerts stresses on the surrounding concrete. When the stresses exceed the strength of the concrete, cracks or delaminations occur. This, of course, causes deterioration and spalling of bridge deck surfaces. Both the Latex and Iowa Method were used to repair bridge decks for this project. The concrete was removed down to the steel and replaced with approximately 1 1/2 inches of low slump or latex modified concrete. The removal of unsound concrete below the top layer of steel was sometimes necessary. The objective of this project was to determine if the bridge overlays would provide a cost effective method of rehabilitation. To do this, unsound and delaminated concrete was removed and replaced by an overlay of low slump or latex modified concrete.
Resumo:
Reinforced Earth is a French development that has been used in the United States for approximately ten years. Virbro-Replacement, more commonly referred to as stone columns, is an outgrowth of deep densification of cohesionless soils originally developed in Germany. Reinforced Earth has applicability when wall height is greater than about twelve feet and deep seated foundation failure is not a concern. Stone columns are applicable when soft, cohesive subsoil conditions are encountered and bearing capacity and shearing resistance must be increased. The conditions in Sioux City on Wesley Way can be summarized as: (1) restricted right of way, (2) fill height in excess of 25 feet creating unstable conditions, (3) adjacent structures that could not be removed. After analyzing alternatives, it was decided that Reinforced Earth walls constructed on top of stone columns were the most practical approach.
Resumo:
Pavements have been overlaid with thin bonded portland cement concrete (PCC) for several years. These projects have had traffic detoured for a period of 5-10 days. These detours are unacceptable to the traveling public and result in severe criticism. The use of thin bonded fast track overlay was promoted to allow a thin bonded PCC overlay with minimal disruption of local traffic. This project demonstrated the concept of using one lane of the roadway to maintain traffic while the overlay was placed on the other and then with the rapid strength gain of the fast track concrete, the construction and local traffic is maintained on the newly placed, thin bonded overlay. The goals of this project were: 1. Traffic usage immediately after placement and finishing. 2. Reduce traffic disruption on a single lane to less than 5 hours. 3. Reduce traffic disruption on a given section of two-lane roadway to less than 2 days. 4. The procedure must be economically viable and competitive with existing alternatives. 5. Design life for new construction equivalent to or in excess of conventional pavements. 6. A 20 year minimum design life for rehabilitated pavements.
Resumo:
Two lanes of a major four-lane arterial street in Cedar Rapids, Iowa, needed reconstruction. Because of the traffic volume and the detour problem, closure of the intersections, even for 1 day was not feasible. Use of Fast Track concrete paving on the mainline portion of the project permitted achievement of the opening strength of 400 psi in less than 12 hr. Fast Track II, used for the intersections, achieved the opening strength of 350 psi in 6 to 7 hr. Flexural and compression specimens of two sections each in the Fast Track and Fast Track II sections were subjected to pulse velocity tests. Maturity curves were developed by monitoring the temperatures. Correlations were performed between the pulse velocity and flexural strength and between the maturity and flexural strength. The project established the feasibility of using Fast Track II to construct portland cement concrete pavement at night and opening the roadway to traffic the next day.
Resumo:
Identification of ways to enhance consistency and proper entrained air content in hardened concrete pavement has long been a goal of state highway agencies and the Federal Highway Administration. The work performed in this study was done under FHWA Work Order No: DTFH71-97-PTP-IA-47 and referred to as Project HR-1068 by the Iowa DOT. The results of this study indicate that the monitoring devices do provide both the contractor and contracting authority and are a good way of controlling the consistent rate of vibration to achieve a quality concrete pavement product. The devices allow the contractor to monitor vibrator operation effectively and consistently. The equipment proved to be reliable under all weather and paver operating conditions. This type of equipment adds one more way of improving the consistency and quality of the concrete pavement.
Resumo:
The Experimental Project was designated as Research Project No. HR-34, sponsored by the Iowa Highway Research Board and constructed by the Iowa Highway Commission. Construction was supervised cooperatively by Engineers of the Iowa Highway Commission and the Portland Cement Association. The objective of the experiment is to study the behavior of relatively thin portland cement concrete resurfacing courses placed with bond on old concrete pavements. The phase of the problem being studied now, involves only pavements in which the old concrete is structurally sound.