909 resultados para HIV-1 reverse transcriptase


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Certain HLA-B antigens have been associated with lack of progression to AIDS. HLA-B alleles can be divided into two mutually exclusive groups based on the expression of the molecular epitopes HLA-Bw4 and HLA-Bw6. Notably, in addition to its role in presenting viral peptides for immune recognition, the HLA-Bw4, but not HLA-Bw6, motif functions as a ligand for a natural killer cell inhibitory receptor (KIR). Here, we show that profound suppression of HIV-1 viremia is significantly associated with homozygosity for HLA-B alleles that share the HLA-Bw4 epitope. Furthermore, homozygosity for HLA-Bw4 alleles was also significantly associated with the ability to remain AIDS free and to maintain a normal CD4 T cell count in a second cohort of HIV-1-infected individuals with well defined dates of seroconversion. This association was independent of the presence of a mutation in CC chemokine receptor 5 (CCR5) associated with resistance to HIV-1 infection, and it was independent of the presence of HLA alleles that could potentially confound the results. We conclude that homozygosity for HLA-Bw4-bearing B alleles is associated with a significant advantage and that the HLA-Bw4 motif is important in AIDS pathogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Expression of CC chemokine receptor 5 (CCR5), the major coreceptor for HIV-1 cell entry, and its ligands (e.g., RANTES and MIP-1α) is widely regarded as central to the pathogenesis of HIV-1 infection. By surveying nearly 3,000 HIV+ and HIV− individuals from worldwide populations for polymorphisms in the genes encoding RANTES, MIP-1α, and CCR5, we show that the evolutionary histories of human populations have had a significant impact on the distribution of variation in these genes, and that this may be responsible, in part, for the heterogeneous nature of the epidemiology of the HIV-1 pandemic. The varied distribution of RANTES haplotypes (AC, GC, and AG) associated with population-specific HIV-1 transmission- and disease-modifying effects is a striking example. Homozygosity for the AC haplotype was associated with an increased risk of acquiring HIV-1 as well as accelerated disease progression in European Americans, but not in African Americans. Yet, the prevalence of the ancestral AC haplotype is high in individuals of African origin, but substantially lower in non-Africans. In a Japanese cohort, AG-containing RANTES haplotype pairs were associated with a delay in disease progression; however, we now show that their contribution to HIV-1 pathogenesis and epidemiology in other parts of the world is negligible because the AG haplotype is infrequent in non-Far East Asians. Thus, the varied distribution of RANTES, MIP-1α, and CCR5 haplotype pairs and their population-specific phenotypic effects on HIV-1 susceptibility and disease progression results in a complex pattern of biological determinants of HIV-1 epidemiology. These findings have important implications for the design, assessment, and implementation of effective HIV-1 intervention and prevention strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The vast majority of HIV-1 infections in Africa are caused by the A and C viral subtypes rather than the B subtype prevalent in the United States and Western Europe. Genomic differences between subtypes give rise to sequence variations in the encoded proteins, including the HIV-1 protease. Because some amino acid polymorphisms occur at sites that have been associated with drug resistance in the B subtype, it is important to assess the effectiveness of protease inhibitors that have been developed against different subtypes. Here we report the enzymatic characterization of HIV-1 proteases with sequences found in drug-naïve Ugandan adults. The A protease used in these studies differs in seven positions (I13V/E35D/M36I/R41K/R57K/H69K/L89M) in relation to the consensus B subtype protease. Another protease containing a subset of these amino acid polymorphisms (M36I/R41K/H69K/L89M), which are found in subtype C and other HIV subtypes, also was studied. Both proteases were found to have similar catalytic constants, kcat, as the B subtype. The C subtype protease displayed lower Km values against two different substrates resulting in a higher (2.4-fold) catalytic efficiency than the B subtype protease. Indinavir, ritonavir, saquinavir, and nelfinavir inhibit the A and C subtype proteases with 2.5–7-fold and 2–4.5-fold weaker Kis than the B subtype. When all factors are taken into consideration it is found that the C subtype protease has the highest vitality (4–11 higher than the B subtype) whereas the A subtype protease exhibits values ranging between 1.5 and 5. These results point to a higher biochemical fitness of the A and C proteases in the presence of existing inhibitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nucleocapsid protein (NC) of HIV type 1 is a nucleic acid chaperone that facilitates the rearrangement of nucleic acids into conformations containing the maximum number of complementary base pairs. We use an optical tweezers instrument to stretch single DNA molecules from the helix to coil state at room temperature in the presence of NC and a mutant form (SSHS NC) that lacks the two zinc finger structures present in NC. Although both NC and SSHS NC facilitate annealing of complementary strands through electrostatic attraction, only NC destabilizes the helical form of DNA and reduces the cooperativity of the helix-coil transition. In particular, we find that the helix-coil transition free energy at room temperature is significantly reduced in the presence of NC. Thus, upon NC binding, it is likely that thermodynamic fluctuations cause continuous melting and reannealing of base pairs so that DNA strands are able to rapidly sample configurations to find the lowest energy state. The reduced cooperativity allows these fluctuations to occur in the middle of complex double-stranded structures. The reduced stability and cooperativity, coupled with the electrostatic attraction generated by the high charge density of NC, is responsible for the nucleic acid chaperone activity of this protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most HIV replication occurs in solid lymphoid tissue, which has prominent architecture at the histological level, which separates groups of productively infected CD4+ cells. Nevertheless, current population models of HIV assume panmixis within lymphoid tissue. We present a simple “metapopulation” model of HIV replication, where the population of infected cells is comprised of a large number of small populations, each of which is established by a few founder viruses and undergoes turnover. To test this model, we analyzed viral genetic variation of infected cell subpopulations within the spleen and demonstrated the action of founder effects as well as significant variation in the extent of genetic differentiation between subpopulations among patients. The combination of founder effects and subpopulation turnover can result in an effective population size much lower than the actual population size and may contribute to the importance of genetic drift in HIV evolution despite a large number of infected cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that the binding of Rel p50 and p52 homodimers at sites within the transcriptional initiation region of HIV-1 provides for their ability to interact with other proteins that bind the initiator. The binding of one such protein, the initiator protein TFII-I, to the initiation region of HIV-1 is augmented in the presence of Rel p50 and Rel p52 homodimers. Consistent with this, in vitro Rel homodimers potentiate HIV-1 transcription in a manner dependent upon TFII-I. The findings suggest that Rel dimers may regulate HIV-1 transcription in two ways. First, through binding at the kappa B enhancer sites at (-104 to -80), NF-kappa B p50:p65 participates in classical transcriptional activation. Second, Rel dimers such as p50 or p52 might bind at initiator sequences to regulate the de novo binding of components of certain preinitiation complexes. These findings, and the existence of Rel binding sites at the initiators of other genes, suggest roles for Rel proteins in early events determining transcriptional control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A recombinant rabies virus (RV) mutant deficient for the surface spike glycoprotein (G) gene was used to study the incorporation of envelope proteins from HIV-1 expressed from transfected plasmids. A hybrid HIV-1 protein in which the cytoplasmic domain was replaced with that of RV G was incorporated into the virus envelope and rescued the infectivity of the RV mutant. The RV(HIV-1) pseudotype viruses could infect only CD4+ cells, and their infectivity was neutralized specifically by anti-HIV-1 sera. In contrast to the chimeric protein, wild-type HIV-1 envelope protein or mutants with truncated cytoplasmic domains failed to produce pseudotyped particles. This indicates the presence of a specific signal in the RV G cytoplasmic domain, allowing correct incorporation of a spike protein into the envelope of rhabdovirus particles. The possibility of directing the cell tropism of RV by replacement of the RV G with proteins of defined receptor specificity should prove useful for future development of targetable gene delivery vectors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phylogenetic analyses are increasingly used in attempts to clarify transmission patterns of human immunodeficiency virus type 1 (HIV-1), but there is a continuing discussion about their validity because convergent evolution and transmission of minor HIV variants may obscure epidemiological patterns. Here we have studied a unique HIV-1 transmission cluster consisting of nine infected individuals, for whom the time and direction of each virus transmission was exactly known. Most of the transmissions occurred between 1981 and 1983, and a total of 13 blood samples were obtained approximately 2-12 years later. The p17 gag and env V3 regions of the HIV-1 genome were directly sequenced from uncultured lymphocytes. A true phylogenetic tree was constructed based on the knowledge about when the transmissions had occurred and when the samples were obtained. This complex, known HIV-1 transmission history was compared with reconstructed molecular trees, which were calculated from the DNA sequences by several commonly used phylogenetic inference methods [Fitch-Margoliash, neighbor-joining, minimum-evolution, maximum-likelihood, maximum-parsimony, unweighted pair group method using arithmetic averages (UPGMA), and a Fitch-Margoliash method assuming a molecular clock (KITSCH)]. A majority of the reconstructed trees were good estimates of the true phylogeny; 12 of 13 taxa were correctly positioned in the most accurate trees. The choice of gene fragment was found to be more important than the choice of phylogenetic method and substitution model. However, methods that are sensitive to unequal rates of change performed more poorly (such as UPGMA and KITSCH, which assume a constant molecular clock). The rapidly evolving V3 fragment gave better reconstructions than p17, but a combined data set of both p17 and V3 performed best. The accuracy of the phylogenetic methods justifies their use in HIV-1 research and argues against convergent evolution and selective transmission of certain virus variants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Defective-interfering viruses are known to modulate virus pathogenicity. We describe conditionally replicating HIV-1 (crHIV) vectors that interfere with wild-type HIV-1 (wt-HIV) replication and spread. crHIV vectors are defective-interfering HIV genomes that do not encode viral proteins and replicate only in the presence of wt-HIV helper virus. In cells that contain both wt-HIV and crHIV genomes, the latter are shown to have a selective advantage for packaging into progeny virions because they contain ribozymes that cleave wt-HIV RNA but not crHIV RNA. A crHIV vector containing a triple anti-U5 ribozyme significantly interferes with wt-HIV replication and spread. crHIV vectors are also shown to undergo the full viral replicative cycle after complementation with wt-HIV helper-virus. The application of defective interfering crHIV vectors may result in competition with wt-HIVs and decrease pathogenic viral loads in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The HIV-1 envelope glycoprotein gp120 displays inefficient intracellular transport, which is caused by its retention in the endoplasmic reticulum. Coexpression in insect cells (Sf9) of HIV-1 gp120 with calnexin has shown that their interaction was modulated by the signal sequence of HIV-1 gp120. gp120, with its natural signal sequence, showed a prolonged association with calnexin with a t1/2 of greater than 20 min. Replacement of the natural signal sequence with the signal sequence from mellitin led to a decreased time of association of gp120 with calnexin (t1/2 < 10 min). These different times of calnexin association coincided both with the folding of gp120 as measured by the ability of bind CD4 and with endoplasmic reticulum to Golgi transport as analyzed by the acquisition of partial endoglycosidase H resistance. Using a monospecific antibody to the HIV-1 gp120 natural signal peptide, we showed that calnexin associated with N-glycosylated but uncleaved gp120. Only after dissociation from calnexin was gp120 cleaved, but very inefficiently. Only the small proportion of signal-cleaved gp120 molecules acquired transport competence and were secreted. This is the first report demonstrating the effect of the signal sequence on calnexin association.