931 resultados para HIPPOCAMPAL SCLEROSIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used [3H]thymidine to document the birth of neurons and their recruitment into the hippocampal complex (HC) of juvenile (4.5 months old) and adult blackcapped chickadees (Parus atricapillus) living in their natural surroundings. Birds received a single dose of [3H]thymidine in August and were recaptured and killed 6 weeks later, in early October. All brains were stained with Cresyl violet, a Nissl stain. The boundaries of the HC were defined by reference to the ventricular wall, the brain surface, or differences in neuronal packing density. The HC of juveniles was as large as or larger than that of adults and packing density of HC neurons was 31% higher in juveniles than in adults. Almost all of the 3H-labeled HC neurons were found in a 350-m-wide layer of tissue adjacent to the lateral ventricle. Within this layer the fraction of 3H-labeled neurons was 50% higher in juveniles than in adults. We conclude that the HC of juvenile chickadees recruits more neurons and has more neurons than that of adults. We speculate that juveniles encounter greater environmental novelty than adults and that the greater number of HC neurons found in juveniles allows them to learn more than adults. At a more general level, we suggest that (i) long-term learning alters HC neurons irreversibly; (ii) sustained hippocampal learning requires the periodic replacement of HC neurons; (iii) memories coded by hippocampal neurons are transferred elsewhere before the neurons are replaced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used positron emission tomography (PET) to examine the role of the hippocampal formation in implicit and explicit memory. Human volunteers studied a list of familiar words, and then they either provided the first word that came to mind in response to three-letter cues (implicit memory) or tried to recall studied words in response to the same cues (explicit memory). There was no evidence of hippocampal activation in association with implicit memory. However, priming effects on the implicit memory test were associated with decreased activity in extrastriate visual cortex. On the explicit memory test, subjects recalled many target words in one condition and recalled few words in a second condition, despite trying to remember them. Comparisons between the two conditions showed that blood-flow increases in the hippocampal formation are specifically associated with the conscious recollection of studied words, whereas blood-flow increases in frontal regions are associated with efforts to retrieve target words. Our results help to clarify some puzzles concerning the role of the hippocampal formation in human memory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitric oxide (NO) has been implicated as a pathogenic mediator in a variety of central nervous system (CNS) disease states, including the animal model of multiple sclerosis (MS) and experimental allergic encephalomyelitis. We have examined post-mortem brain tissues collected from patients previously diagnosed with MS, as well as tissues collected from the brains of patients dying without neuropathies. Both Northern blot analysis and reverse transcriptase (RT)-driven in situ PCR (RT-in situ PCR) studies demonstrated that inducible NO synthase (iNOS) mRNA was present in the brain tissues from MS patients but was absent in equivalent tissues from normal controls. We have also performed experiments identifying the cell type responsible for iNOS expression by RT-in situ PCR in combination with immunohistochemistry. Concomitantly, we analyzed the tissues for the presence of the NO reaction product nitrotyrosine to demonstrate the presence of a protein nitrosylation adduct. We report here that iNOS mRNA was detectable in the brains of 100% of the CNS tissues from seven MS patients examined but in none of the three normal brains. RT-in situ PCR experiments also demonstrated the presence of iNOS mRNA in the cytoplasm of cells that also expressed the ligand recognized by the Ricinus communis agglutinin 1 (RCA-1), a monocyte/macrophage lineage marker. Additionally, specific labeling of cells was observed when brain tissues from MS patients were exposed to antisera reactive with nitrotyrosine residues but was significantly less plentiful in brain tissue from patients without CNS disease. These results demonstrate that iNOS, one of the enzymes responsible for the production of NO, is expressed at significant levels in the brains of patients with MS and may contribute to the pathology associated with the disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When performed at increased external [Ca2+]/[Mg2+] ratio (2.5 mM/0.5 mM), temporary block of A1 adenosine receptors in hippocampus [by 8-cyclopentyltheophylline (CPT)] leads to a dramatic and irreversible change in the excitatory postsynaptic current (EPSC) evoked by Schaffer collateral/commissural (SCC) stimulation and recorded by in situ patch clamp in CA1 pyramidal neurons. The duration of the EPSC becomes stimulus dependent, increasing with increase in stimulus strength. The later occurring component of the EPSC is carried through N-methyl-D-aspartate (NMDA) receptor-operated channels but disappears under either the NMDA antagonist 2-amino-5-phosphonovaleric acid (APV) or the non-NMDA antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). These findings indicate that the late component of the SCC-evoked EPSC is polysynaptic: predominantly non-NMDA receptor-mediated SCC inputs excite CA1 neurons that recurrently excite each other by predominantly NDMA receptor-mediated synapses. These recurrent connections are normally silent but become active after CPT treatment, leading to enhancement of the late component of the EPSC. The activity of these connections is maintained for at least 2 hr after CPT removal. When all functional NMDA receptors are blocked by dizocilpine maleate (MK-801), subsequent application of CPT leads to a partial reappearance of NMDA receptor-mediated EPSCs evoked by SCC stimulation, indicating that latent NMDA receptors are recruited. Altogether, these findings indicate the existence of a powerful system of NMDA receptor-mediated synaptic contacts in SCC input to hippocampal CA1 pyramidal neurons and probably also in reciprocal connections between these neurons, which in the usual preparation are kept latent by activity of A1 receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

T cells, B cells, and antibody are found in the white matter of the central nervous system in multiple sclerosis. The epitope center for the antibody response to human myelin basic protein (MBP) fits precisely the minimal epitope Pro85-Val-Val-His-Phe-Phe-Lys-Asn-Ile-Val-Thr-Pro96 for that reported for HLA DR2b (DRB1*1501)-restricted T cells that recognize MBP [Wucherpfenning, K.W., Sette, A., Southwood, S., Oseroff, C., Matsui, M., Strominger, J. & Hafler, D. (1994) J. Exp. Med. 179, 279-290], and overlaps with the reported DR2a-restricted epitope for T cells reactive to MBP [Martin, R., Howell, M. D., Jaraquemada, D., Furlage, M., Richert, J., Brostoff, S., Long, E. O., McFarlin, D. E. & McFarland, H. F. (1991) J. Exp. Med. 173, 19-24]. We describe a molecular model of this epitope.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evidence is presented for a distinctive type of hippocampal synaptic modification [previously described for a molluscan gamma-aminobutyric acid (GABA) synapse after paired pre- and postsynaptic excitation]: transformation of GABA-mediated synaptic inhibition into synaptic excitation. This transformation persists with no further paired stimulation for 60 min or longer and is termed long-term transformation. Long-term transformation is shown to contribute to pairing-induced long-term potentiation but not to long-term potentiation induced by presynaptic stimulation alone. Further support for such mechanistic divergence is provided by pharmacologic effects on long-term transformation as well as these two forms of long-term potentiation by Cl- channel blockers, glutamate and GABA antagonists, as well as the endogenous cannabinoid ligand anandamide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parathyroid hormone-related protein (PTHrP) is synthesized in the brain, and a single type of cloned receptor for the N-terminal portion of PTHrP and PTH is present in the central nervous system. Nothing is known about the physiological actions or signaling pathways used by PTHrP in the brain. Using cultured rat hippocampal neurons, we demonstrate that N-terminal PTHrP[1-34] and PTH[1-34] signal via cAMP and cytosolic calcium transients. The cAMP response showed strong acute (< or = 6 h) homologous and heterologous desensitization after preincubation with PTHrP or PTH. In contrast, the acute calcium response did not desensitize after preincubation with PTHrP; in fact, preincubation dramatically recruited additional responsive neurons. Unexpectedly, C-terminal PTHrP[107-139], which does not bind or activate the cloned PTH/PTHrP receptor, signaled in neurons via cytosolic calcium but not cAMP. Although some neurons responded to both PTHrP[1-34] and PTHrP[107-139], others responded only to PTHrP[1-34]. We conclude that certain hippocampal neurons exhibit dual signaling in response to PTHrP[1-34] and that some neurons have a receptor for C-terminal PTHrP that signals only via cytosolic calcium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The survival of cultured mouse hippocampal neurons was found to be greatly enhanced by micromolar concentrations of the excitatory neurotransmitter glutamate. Blockade of kainate/AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) glutamate receptors increased the rate of neuron death, suggesting that endogenous glutamate in the cultures promotes survival. Addition of glutamate (0.5-1 microM) further increased neuron survival, whereas glutamate in excess of 20 microM resulted in increased death. Thus, the survival vs. glutamate dose-response relation is bell-shaped with an optimal glutamate concentration near 1 microM. We found that hippocampal neurons from mice with the genetic defect trisomy 16 (Ts16) died 2-3 times faster than normal (euploid) neurons. Moreover, glutamate, at all concentrations tested, failed to increase survival of Ts16 neurons. In contrast, the neurotrophic polypeptide basic fibroblast growth factor did increase the survival of Ts16 and euploid neurons. Ts16 is a naturally occurring mouse genetic abnormality, the human analog of which (Down syndrome) leads to altered brain development and Alzheimer disease. These results demonstrate that the Ts16 genotype confers a defect in the glutamate-mediated survival response of hippocampal neurons and that this defect can contribute to their accelerated death.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerous synaptic proteins, including several integral membrane proteins, have been assigned roles in synaptic vesicle fusion with or retrieval from the presynaptic plasma membrane. In contrast, the synapsins, neuron-specific phosphoproteins associated with the cytoplasmic surface of synaptic vesicles, appear to play a much broader role, being involved in the regulation of neurotransmitter release and in the organization of the nerve terminal. Here we have administered antisense synapsin II oligonucleotides to dissociated hippocampal neurons, either before the onset of synaptogenesis or 1 week after the onset of synaptogenesis. In both cases, synapsin II was no longer detectable within 24-48 h of treatment. After 5 days of treatment, cultures were analyzed for the presence of synapses by synapsin I and synaptophysin antibody labeling and by electron microscopy. Cultures in which synapsin II was suppressed after axon elongation, but before synapse formation, did not develop synapses. Cultures in which synapsin II was suppressed after the development of synapses lost most of their synapses. Remarkably, with the removal of the antisense oligonucleotides, neurons and their synaptic connections recovered. These studies lead us to conclude that synapsin II is involved in the formation and maintenance of synapses in hippocampal neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synapsin I, the most abundant of all neuronal phosphoproteins, is enriched in synaptic vesicles. It has been hypothesized to regulate synaptogenesis and neurotransmitter release from adult nerve terminals. The evidence for such roles has been highly suggestive but not compelling. To evaluate the possible involvement of synapsin I in synaptogenesis and in the function of adult synapses, we have generated synapsin I-deficient mice by homologous recombination. We report herein that outgrowth of predendritic neurites and of axons was severely retarded in the hippocampal neurons of embryonic synapsin I mutant mice. Furthermore, synapse formation was significantly delayed in these mutant neurons. These results indicate that synapsin I plays a role in regulation of axonogenesis and synaptogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cAMP-dependent protein kinase (PKA) has been shown to play an important role in long-term potentiation (LTP) in the hippocampus, but little is known about the function of PKA in long-term depression (LTD). We have combined pharmacologic and genetic approaches to demonstrate that PKA activity is required for both homosynaptic LTD and depotentiation and that a specific neuronal isoform of type I regulatory subunit (RI beta) is essential. Mice carrying a null mutation in the gene encoding RI beta were established by use of gene targeting in embryonic stem cells. Hippocampal slices from mutant mice show a severe deficit in LTD and depotentiation at the Schaffer collateral-CA1 synapse. This defect is also evident at the lateral perforant path-dentate granule cell synapse in RI beta mutant mice. Despite a compensatory increase in the related RI alpha protein and a lack of detectable changes in total PKA activity, the hippocampal function in these mice is not rescued, suggesting a unique role for RI beta. Since the late phase of CA1 LTP also requires PKA but is normal in RI beta mutant mice, our data further suggest that different forms of synaptic plasticity are likely to employ different combinations of regulatory and catalytic subunits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brain-derived neurotrophic factor (BDNF), a member of the nerve growth factor (NGF) gene family, has been shown to influence the survival and differentiation of specific classes of neurons in vitro and in vivo. The possibility that neurotrophins are also involved in processes of neuronal plasticity has only recently begun to receive attention. To determine whether BDNF has a function in processes such as long-term potentiation (LTP), we produced a strain of mice with a deletion in the coding sequence of the BDNF gene. We then used hippocampal slices from these mice to investigate whether LTP was affected by this mutation. Homo- and heterozygous mutant mice showed significantly reduced LTP in the CA1 region of the hippocampus. The magnitude of the potentiation, as well as the percentage of cases in which LTP could be induced successfully, was clearly affected. According to the criteria tested, important pharmacological, anatomical, and morphological parameters in the hippocampus of these animals appear to be normal. These results suggest that BDNF might have a functional role in the expression of LTP in the hippocampus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We explored how two independent variables, one genetic (i.e., specific rat strains) and another environmental (i.e., a developmental excitotoxic hippocampal lesion), contribute to phenotypic variation. Sprague-Dawley (SD), Fischer 344 (F344), and Lewis rats underwent two grades of neonatal excitotoxic damage: small and large ventral hippocampal (SVH and LVH) lesions. Locomotion was tested before puberty [postnatal day 35 (P35)] and after puberty (P56) following exposure to a novel environment or administration of amphetamine. The behavioral effects were strain- and lesion-specific. As shown previously, SD rats with LVH lesions displayed enhanced spontaneous and amphetamine-induced locomotion as compared with controls at P56, but not at P35. SVH lesions in SD rats had no effect at any age. In F344 rats with LVH lesions, enhanced spontaneous and amphetamine-induced locomotion appeared early (P35) and was exaggerated at P56. SVH lesions in F344 rats resulted in a pattern of effects analogous to LVH lesions in SD rats--i.e., postpubertal onset of hyperlocomotion (P56). In Lewis rats, LVH lesions had no significant effect on novelty- or amphetamine-induced locomotion at any age. These data show that the degree of genetic predisposition and the extent of early induced hippocampal defect contribute to the particular pattern of behavioral outcome. These results may have implications for modeling interactions of genetic and environmental factors involved in schizophrenia, a disorder characterized by phenotypic heterogeneity, genetic predisposition, a developmental hippocampal abnormality, and vulnerability to environmental stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although neurotrophins are primarily associated with long-term effects on neuronal survival and differentiation, recent studies have shown that acute changes in synaptic transmission can also be produced. In the hippocampus, an area critically involved in learning and memory, we have found that brain-derived neurotrophic factor (BDNF) rapidly enhanced synaptic efficacy through a previously unreported mechanism--increased postsynaptic responsiveness via a phosphorylation-dependent pathway. Within minutes of BDNF application to cultured hippocampal neurons, spontaneous firing rate was dramatically increased, as were the frequency and amplitude of excitatory postsynaptic currents. The increased frequency of postsynaptic currents resulted from the change in presynaptic firing. However, the increased amplitude was postsynaptic in origin because it was selectively blocked by intracellular injection of the tyrosine kinase receptor (Ntrk2/TrkB) inhibitor K-252a and potentiated by injection of the phosphatase inhibitor okadaic acid. These results suggest a role for BDNF in the modulation of synaptic transmission in the hippocampus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Representational difference analysis was used to search for pathogens in multiple sclerosis brains. We detected a 341-nucleotide fragment that was 99.4% identical to the major DNA binding protein gene of human herpesvirus 6 (HHV-6). Examination of 86 brain specimens by PCR demonstrated that HHV-6 was present in > 70% of MS cases and controls and is thus a commensal virus of the human brain. By DNA sequencing, 36/37 viruses from MS cases and controls were typed as HHV-6 variant B group 2. Other herpesviruses, retroviruses, and measles virus were detected infrequently or not at all. HHV-6 expression was examined by immunocytochemistry with monoclonal antibodies against HHV-6 virion protein 101K and DNA binding protein p41. Nuclear staining of oligodendrocytes was observed in MS cases but not in controls, and in MS cases it was observed around plaques more frequently than in uninvolved white matter. MS cases showed prominent cytoplasmic staining of neurons in gray matter adjacent to plaques, although neurons expressing HHV-6 were also found in certain controls. Since destruction of oligodendrocytes is a hallmark of MS, these studies suggest an association of HHV-6 with the etiology or pathogenesis of MS.