902 resultados para Guidance dimensions
Resumo:
The purpose of the present study was to evaluate the thickness and the anatomic characteristics of the Schneiderian membrane and cortical bone using limited cone beam computed tomography (CBCT) scannning in patients referred for planning of apical surgery of maxillary molars.
Resumo:
The aim of this study was to characterize aortic root dimensions of patients with aortic valve stenosis undergoing transcatheter aortic valve replacement (TAVR) and to evaluate sex differences.
Resumo:
Joint-preserving hip surgery, either arthroscopic or open, increasingly is used for the treatment of symptomatic femoroacetabular impingement (FAI). As a consequence of surgery, thickening of the joint capsule and intraarticular adhesions between the labrum and joint capsule and between the femoral neck and the joint capsule have been observed. These alterations are believed to cause persistent pain and reduced range of motion. Because the diagnosis is made with MR arthrography, knowledge of the normal capsular anatomy and thickness on MRI in patients is important. To date there is no such information available.
Resumo:
The role of low-level stimulus-driven control in the guidance of overt visual attention has been difficult to establish because low- and high-level visual content are spatially correlated within natural visual stimuli. Here we show that impairment of parietal cortical areas, either permanently by a lesion or reversibly by repetitive transcranial magnetic stimulation (rTMS), leads to fixation of locations with higher values of low-level features as compared to control subjects or in a no-rTMS condition. Moreover, this unmasking of stimulus-driven control crucially depends on the intrahemispheric balance between top-down and bottom-up cortical areas. This result suggests that although in normal behavior high-level features might exert a strong influence, low-level features do contribute to guide visual selection during the exploration of complex natural stimuli.
Resumo:
This paper is meant to provide guidance to anyone wishing to write a neurological guideline for diagnosis or treatment, and is directed at the Scientist Panels and task forces of the European Federation of Neurological Societies (EFNS). It substitutes the previous guidance paper from 2004. It contains several new aspects: the guidance is now based on a change of the grading system for evidence and for the resulting recommendations, and has adopted The Grading of Recommendations, Assessment, Development and Evaluation system (GRADE). The process of grading the quality of evidence and strength of recommendations can now be improved and made more transparent. The task forces embarking on the development of a guideline must now make clearer and more transparent choices about outcomes considered most relevant when searching the literature and evaluating their findings. Thus, the outcomes chosen will be more critical, more patient-oriented and easier to translate into simple recommendations. This paper also provides updated practical recommendations for planning a guideline task force within the framework of the EFNS. Finally, this paper hopes to find the approval also by the relevant bodies of our future organization, the European Academy of Neurology.
Resumo:
The article summarizes the collective views expressed at the fourth session of the workshop Tissue Engineering-the Next Generation, which was devoted to the translation of results of tissue engineering research into applications. Ernst Hunziker described the paradigm of a dual translational approach, and argued that tissue engineering should be guided by the dimensions and physiological setting of the bodily compartment to be repaired. Myron Spector discussed collagen-glycosaminoglycan (GAG) scaffolds for musculoskeletal tissue engineering. Jeanette Libera focused on the biological and clinical aspects of cartilage tissue engineering, and described a completely autologous procedure for engineering cartilage using the patient's own chondrocytes and blood serum. Arthur Gertzman reviewed the applications of allograft tissues in orthopedic surgery, and outlined the potential of allograft tissues as models for biological and medical studies. Savio Woo discussed a list of functional tissue engineering approaches designed to restore the biochemical and biomechanical properties of injured ligaments and tendons to be closer to that of the normal tissues. Specific examples of using biological scaffolds that have chemoattractants as well as growth factors with unique contact guidance properties to improve their healing process were shown. Anthony Ratcliffe discussed the translation of the results of research into products that are profitable and meet regulatory requirements. Michael Lysaght challenged the proposition that commercial and clinical failures of early tissue engineering products demonstrate a need for more focus on basic research. Arthur Coury described the evolution of tissue engineering products based on the example of Genzyme, and how various definitions of success and failure can affect perceptions and policies relative to the status and advancement of the field of tissue engineering.