997 resultados para Growing stage
Resumo:
当前大气CO2浓度升高是全球变化的主要趋势之一,CO2浓度升高还会引起全球变暖等其它环境问题,因而CO2浓度浓度升高对植物影响的研究已经成为全球变化领域的焦点。红桦是川西亚高山地区暗针叶林演替初期的先锋树种和演替后期的建群种,在群落演替过程中它对环境因子的响应决定红桦群落的演替进程。本文通过控制CO2浓度的气候室试验,研究了CO2浓度倍增环境下,不同密度水平红桦碳氮固定、分配可能发生的改变,并探讨了升高大气CO2浓度对群体内部竞争的影响。以期通过本研究明确川西亚高山地区代表性物种红桦对未来气候变化的响应,为今后采取措施应对气候变化、妥善进行森林管理提供理论依据和科学指导。主要研究结果如下: 1.升高CO2浓度对红桦幼苗生长的影响以及树皮、树干响应的不同 (1) CO2浓度升高显著促进红桦幼苗的生物量、株高、基茎的生长,同时也改变生物量在体内的分配格局,主要是增加根和主茎、减少叶在总生物量中的比重。(2)树皮和树干对升高CO2浓度的影响有差异,它们对CO2浓度升高的反应程度不同,但反应方向一致。 2.密度的副效应 (1) 增加种植密度对单株生物量、株高和基径的生长具有副效应,也降低升高CO2浓度对红桦生长的正效应。(2) 增加种植密度,显著增加红桦幼苗的群体生物量,从而使红桦群体固定更多的大气CO2气体。可见密度在决定红桦生物量及固碳能力方面具有重要意义。探索适合未来大气CO2浓度升高条件下植物生长的密度,对未来的森林经济生产、生态恢复具有重要意义。 3. 升高CO2浓度对红桦幼苗苗冠结构及冠层内部竞争的影响 (1) 冠幅、冠高、苗冠表面积和苗冠体积等树冠特征均受CO2浓度升高的影响而增加,但是受密度增加的影响而降低。(2) 单位苗冠投影面积叶片数(LDcpa)和单位苗冠体积叶片数(LDcv)均低于相应的现行CO2浓度处理,这主要是由于冠幅和冠高的快速生长所造成的。(3) LDcpa和LDcv的降低表明,红桦在升高CO2浓度的条件下,会作出积极的响应,从而缓解由于群体和个体生长的增加所引起的竞争压力的增加。 4. 升高CO2浓度对红桦幼苗养分元素吸收与分配的影响 (1) CO2浓度升高,植株各器官N、P含量降低,但单株N、P总吸收量均增加。红桦幼苗体内N、P浓度的下降是由于生物量迅速增加引起的稀释效应造成的。(2) CO2浓度升高,N、P向主茎和根的分配增加,向叶片的分配减少,主要是由于前者在总生物量中的比重增加,而后者减少了。(3) CO2浓度升高,氮磷利用效率(NUE和PUE)提高,氮磷累积速率(NAcR和PAcR)显著增加。而NUE和PUE的提高可以有效缓解CO2浓度升高后,亚高山和高山地区森林土壤中养分元素不足对森林生产力的限制。 5. 升高CO2浓度对红桦幼苗群体碳平衡的影响 (1) 升高CO2浓度对植物的光合作用、呼吸速率和生长均具有促进作用。(2) 土壤有机碳含量在实验前期迅速增加,后期积累速率下降。(3) 升高CO2浓度以后,土壤呼吸显著增强;土壤呼吸还具有明显的季节变化。(4) 红桦群体日固碳量受到升高CO2浓度的促进作用。结果(1)-(4)说明所研究群落的碳动态对现行的气候波动是敏感的;所研究群落在作为大气CO2气体的源-汇关系方面至少存在季节间的源汇飘移。(5)种植密度的升高显著增加了群体固碳量。 6. 升高CO2浓度对红桦幼苗生长后期叶片衰老的影响 升高CO2浓度有利于减缓红桦幼苗叶片生长季节末期的衰老。生长季节末期,随着CO2浓度的升高光合速率和可溶性蛋白含量均呈上升趋势,同时MDA(丙二醛)含量下降,保护酶SOD(超氧化物岐化酶)、CAT(过氧化氢酶)活性升高。由此说明,升高CO2浓度有利于减缓生长季节后期叶片的衰老,使叶片维持较高的光合速率,也从生理学的角度支持了本文及前人有关CO2浓度升高促进植物光合和生长的假说及结果。 The increased CO2 concentration is one of the most important problems among global changes. The increase of CO2 will also cause other environmental problems, such as global warming, etc. So the effects of elevated CO2 on plant have drawn sights of many scientists in the research field of global change. Red birch (Betula albosinensis) usually emerges as the pioneer species in initial stage and as constructive species in later stages of forest community succession of the dark coniferous forests in Western Sichuan, China. It’s response to elevated CO2 may determine the succession process of the community where it lives in. By controlling CO2 at the ambient and twice as the ambient level (ambient + 350 umol mol-1) using enclosed-top chambers (ETC), possible effects of elevated CO2 on carbon fixation and allocation under two plantation densities are investigated. The effects of elevated CO2 on competition within canopy of red birch seedlings are also observed in the present paper. We hope to make sure of the effects of elevated CO2 on the representative species, red birch. And so that, our results could provide a strong theoretical evidence and scientific direction for forest management and afforestation under a future, CO2 elevated world. The results are as fowllows: 1. The effects of elevated CO2 on growth and the different responses of wood and bark of red birch seedlings (1) Elevated CO2 increases the growth of seedling biomass, seedling height and basal diameter of red birch. It also changed the biomass allocation in red birch seedlings. The ratio of root and main stem to all biomass is increased and the ratio of leaf is decreased. (2) Tree bark and wood show different response degree but similar response direction to elevated CO2. 2. Negative effects of planting density (1) The increase of planting density showes negative effects on the individual growth of seedling biomass, seedling height and basal diameter of red birch. It also eliminates the positive effects of elevated CO2 on growth of red birch seedlings. (2) Community biomass is increased by the elevated planting density, which means that the high density red birch community could fix more CO2 than the low density one. These results show that planting density plays an important role in determining biomass and carbon fixation ability of red birch community. Thus, exploring proper planting density becomes economically important for the future, CO2 elevated word. 3. The effects of elevated CO2 on crown architecture and competition within canopy of red birch seedlings (1) Crown width, crown depth, crown surface area and crown volume are all increased under the influence of elevated CO2. (2) Leaf number per unit area of projected crown area (LDcpa) and per unit volume of crown volume (LDcv) are lower under elevated CO2. This is resulted from the stimulated growth of tree crown features. (3) The decrease of LDcpa and LDcv indicate that plants will respond forwardly to reduce the possible increase of competition resulted from stimulated growth of individual plant and collectives in conditions of elevated CO2. 4. The effects of elevated CO2 on nutrition accumulation and allocation of red birch seedlings (1) Contents of N and P decrease due to the prompt increase of biomass of plant organs caused by elevated CO2. However, their accumulations increase under elevated CO2. (2) Elevated CO2 increases the allocation of N, P to main stem but reduced its allocation to leaf for that dry weight of the former increased but the dry weight of the later decreased. (3) Using efficiencies of N, P (NUE and PUE) and their accumulation rates (NAcR and PAcR) are found to increase under elevated CO2. Soil nutrition contents are always the limiting factors for plant growth at subalpine and alpine region. The increased NUE and PUE are helpful to eliminate the nutrition limitation in this area in the future world, when CO2 concentration doubles the ambient. 5. The effects of elevated CO2 on carbon balance of red birch communities (1) Net photosynthetic rates (Pn), dark respiration rates (Rd) and growth are all stimulated by elevated CO2. (2) Content soil organic carbon increases sharply at the primary stage of experiments and then the increasing rates decrease to a low level at later stages. (3) Soil respiration rates increase significantly with the elevation of CO2 concentration. (4) The daily carbon fixations of whole community are heightened by elevated CO2. The results (1)-(4) suggest that, the community being studied are sensitive to current climate change; the studied community, as a sink of atmospheric CO2, is pool-sink alternative between seasons. (5) The carbon fixations are increased along the increase of planting densities. 6. The effects of elevated CO2 on physiological features of leaf senescences of red birch seedlings at the later stage of growing season Elevated CO2 helps to postpone the leaf senescences of red birch at the end of the growth season. CO2 enrichment increases the photosynthetic rates, contents of soluble proteins and photosynthetic pigments. And meanwhile contents of malondialdehyde (MDA) decreases and activities of superoxide dismutase (SOD) and catalase (CAT) are both increased. These results suggest that the senescences of red birch leaves are delayed by elevated CO2, which keep the photosynthetic rates at relatively high levels. Our results lend supports to hypothesis and results on stimulated photosynthetic rates and growth from both other researchers and the present paper.
Resumo:
光是植物赖以生存的重要环境因子,但是植物在获得光的同时不可避免的会受到紫外辐射的伤害。尤其是近年来,人类向大气中排放的大量氮氧化合物和氟氯烃类化合物(CFC’s)引起臭氧分子的分解,导致到达地球表面的紫外辐射增加,特别是UV-B辐射增强。而另一方面,植物对UV-B辐射反应的敏感性在种间和品种间存在差异,主要受植物基因型,生态型和生活型的控制。本项目分别以粗枝云杉和青杨组杨树为模式植物,从形态和生理生化方面分别研究了来自不同水分背景下的粗枝云杉种群和来自不同UV-B背景下的青杨种群在增强UV-B下的反应及其反应差异,并探讨了干旱、喷施外源脱落酸(ABA)对它们抗UV-B能力的影响。研究成果可为生态系统的恢复与重建提供理论依据和科学指导。主要研究结果如下: 1. 粗枝云杉的两个种群,湿润种群(来自四川黑水)和干旱种群(来自甘肃迭部)在水分良好和干旱状况下表现出对增强UV-B的不同响应。同时,干旱对粗枝云杉抗UV-B能力的影响也得到研究:两种胁迫共同作用时,干旱表现出在一定程度上减弱了增强UV-B对粗枝云杉的生理特性的影响。 干旱胁迫显著降低了两个粗枝云杉种群的光合同化速率(A), 气孔导度(gs)和PSII的有效光量子产量(Y), 同时,提高了非光化学猝灭效率(qN)和超氧化物歧化酶(SOD)的活性。与湿润种群相比,干旱种群抗旱性更强,表现为干旱种群拥有更高的SOD和干旱进一步加剧了UV-B的胁迫效应。 本研究中,干旱胁迫单独作用时,显著降低了青杨两个种群的生物量积累和气体交换,具体包括A、gs、蒸腾速率(E)和光合氮利用效率(PNUE),提高了两个种群的瞬时水分利用效率(WUEi)、长期水分利用效率(WUET)、碳同位素组分(δ13C)和氮含量(N)。同时,UV吸收物质和ABA含量也得到积累。另一方面,增强UV-B对青杨两个种群各个指标的影响,同干旱所引起的效应有着相似的趋势。同低海拔种群相比,高海拔种群有着更强的抗旱和抗UV-B能力,具体表现在高海拔种群有着更多的生物量积累,更强的气体交换和水分利用效率及更高水平的ABA和UV吸收物质含量。相比干旱诱导的生物量积累和气体交换的降低,在干旱和增强UV-B两个胁迫同时作用于青杨时,这种降低表现的更为明显。显著的干旱和UV-B的交互作用还表现在WUEi, WUET, δ13C, 可溶性蛋白含量, UV吸收物质含量, ABA, 叶片和茎中的N含量以及C/N比中。 3. 经过一个生长季的试验观察,增强UV-B、外源ABA及两因子共同作用对青杨的生物量积累、气体交换、内源ABA和UV吸收物质含量、抗氧化系统以及碳、氮含量和碳/氮比均产生显著影响。本试验中,青杨的两个种群分别来自中国西南部的不同海拔地区,高海拔种群来自青海大通而低海拔种群来自四川九寨。外源ABA的胁迫为直接喷施ABA到青杨叶片,而增强UV-B胁迫是利用平方波系统分别保证青杨苗暴露于外界UV-B强度和两倍于外界UV-B强度下。 研究结果显示,增强UV-B显著的降低了两个青杨种群的株高、基茎、总叶面积和总生物量等生长指标,同时也导致其A、gs、E和叶片中碳含量的减少。而显著增加了SOD和过氧化物酶(GPx)活性水平,诱导了过氧化氢(H2O2)和MDA的显著增加,促进了UV吸收物质和不同器官中内源ABA含量的显著积累。另一方面,外源ABA引起了青杨光合同化速率的下降,SOD和GPx酶活性的增强,H2O2 和 MDA含量也表现出显著增加,同时,内源ABA含量得到显著累积。同低海拔种群相比,高海拔种群具有更加抗UV-B和外源ABA的特性。显著的UV-B和ABA的交互作用表现在A, E, SOD和GPx活性,以及叶片和根部的内源ABA等一系列指标中。在所有胁迫下,叶片中的碳和氮含量同其在茎和根中的含量显著相关,另外,叶片和茎中的氮含量同茎中的碳含量显著相关。 Sunlight is an indispensable environment factor for plants survival and development. Meanwhile, photosynthetic organisms need sunlight and are thus, inevitably, exposed to UV radiation. Especially for recent years, ultraviolet radiation, especially UV-B reaching the Earth’s surface increased because of depletion of ozone layer resulted from emission of NxO and CFC’s from human activities. On the other hand, the sensitivity of plants to UV-B radiation depends on the species, developmental stage and experimental conditions. In this experiment, two populations of Picea asperata Mast from different water background and two populations of Populus cathayana Rehder from different altitude background were selected as model plants to assess the effects of enhanced UV-B radiation. Morphological and physiological traits induced by enhanced UV-B in each plant species were observed and the different responses were discussed, furthermore the influences of drought and exogenous ABA on responses induced by enhanced UV-B were studied. The study could provide a strong theoretical evidence and scientific direction for the afforestation and rehabilitation of ecosystem. The results are as follows: 1. Different responses of two contrasting Picea asperata Mast. populations to enhanced ultraviolet-B (UV-B) radiation under well-watered and drought conditions were investigated. And the effects of enhanced UV-B on tolerance of drought were also observed in our study that the UV-B exposure may have alleviated some of the damage induced by drought. Two contrasting populations, originating from a wet and dry climate region in China, respectively, were employed in our study. Drought significantly decreased CO2 assimilation rate (A), stomatal conductance (gs) and effective PSII quantum yield (Y), while it significantly increased non-photochemical quenching (qN) and the activity of superoxide dismutase (SOD) in both populations. Compared with the wet climate population, the dry climate population was more acclimated to drought stress and showed much higher activities of SOD and ascorbate peroxidase (APX), and much lower levels of malondialdehyde (MDA) and electrolyte leakage. On the other hand, enhanced UV-B radiation also induced a significant decrease in the chlorophyll (Chl) content in both populations under well-watered conditions, and a significant increase in UV-absorbing compounds in the wet climate population. After one growing season of exposure to different UV-B levels and watering regimes, the increases in MDA and electrolyte leakage, as induced by drought, were less pronounced under the combination of UV-B and drought. In addition, an additive effect of drought and UV-B on A and gs was observed in the wet climate population, and on the activity of APX and qN in the dry climate population. 2. The significant effects of drought, enhanced UV-B radiation and their combination on Populus cathayana Rehd. growth and physiological traits were investigated in two populations, originating from high and low altitudes in south-west China. Our results showed that UV-B acts as an important signal allowing P. cathayana seedlings to respond to drought and that the combination of drought and UV-B may cause synergistically detrimental effects on plant growth in both populations. In both populations, drought significantly decreased biomass accumulation and gas exchange parameters, including A, gs, E and photosynthetic nitrogen use efficiency (PNUE). However, instantaneous water use efficiency (WUEi), transpiration efficiency (WUET), carbon isotope composition (δ13C) and nitrogen (N) content, as well as the accumulation of soluble protein, UV-absorbing compounds and abscisic acid (ABA) were significantly increased by drought. On the other hand, cuttings from both populations, when kept under enhanced UV-B radiation conditions, showed very similar changes in all above-mentioned parameters, as induced by drought. Compared with the low altitude population, the high altitude population was more tolerant to drought and enhanced UV-B, as indicated by the higher level of biomass accumulation, gas exchange, water-use efficiency, ABA concentration and UV-absorbing compounds. After one growing season of exposure to different UV-B levels and watering regimes, the decrease in biomass accumulation and gas exchange, induced by drought, was more pronounced under the combination of UV-B and drought. Significant interactions between drought and UV-B were observed in WUEi, WUET, δ13C, soluble protein, UV-absorbing compounds, ABA and in the leaf and stem N, as well as in the leaf and stem C/N ratio. 3. During one growing season, significant effects induced by enhanced UV-B radiation, exogenous ABA and their combination on biomass accumulation, gas exchange, endogenous ABA and UV-absorbing compounds concentrations, antioxidant system as well as carbon (C) content, nitrogen (N) content and C/N ratio were investigated in two contrasting Populus cathayana populations, originating from high and low altitudes in south-west China. Exogenous ABA was sprayed to the leaves and enhanced UV-B treatment was using a square-wave system to make the seedlings under ambient (1×) or twice ambient (2×) doses of biologically effective UV-B radiation (UV-BBE). Enhanced UV-B radiation significantly decreased height, basal diameter, total leaf area, total biomass, A, gs, E and carbon (C) content in leaves, and significantly increased activities of SOD and guaiacol peroxidase (GPx), hydrogen peroxide (H2O2) and malonaldehyde (MDA) content as well as the accumulation of UV-absorbing compounds and endogenous ABA concentrations among different organs in both populations. In contrast, exogenous ABA showed significant decrease in A and significant increases in activities of SOD and GPx, H2O2, MDA content and the endogenous ABA concentrations. Compared with the low altitude population, the high altitude population was more tolerant to enhanced UV-B and exogenous ABA. Significant interactions between UV-B and ABA were observed in A, E, activities of SOD and GPx, as well as in endogenous ABA in leaves and roots of both populations. Across all treatments, C and N content in leaves was strongly correlated with those were in stems and roots, respectively. Additionally, leaf and stem N content were significant correlated with stem C content.
Resumo:
为探讨甜高粱(Sorghum bicolor)在青海作为饲料作物种植的可能性,在青海高原上做了初步试验,结果显示:密度对茎秆高度、茎粗、产量有显著影响,对生育期、单株质量影响不显著,株行距为0.40 m×0.20m时,产量最高;浇水次数对甜高粱的生育期、茎秆高度、茎粗、单株质量、产量没有显著影响,表明甜高粱对水分依赖不高,具有很强的耐旱和抗旱性;地膜对甜高粱有极显著影响,使其生育期提前,茎秆高度增高,单株质量增加、产量提高;糖分含量在开花-收获期为15.93%~16.67%,比不盖地膜增加了29.19%~47.98%;大田示范密度0.50 m×0.20 m,开花-收获期666.7 m2产量达4 890.8 kg,投入产出比为1∶1.78,效益显著。研究表明,在青海高原东部农业区盖地膜种植饲用甜高粱,用作饲料是完全可行的。
Resumo:
A marine green alga, Platymonas subcordiformis, was demonstrated to photobiologically evolve hydrogen (H-2) after the first stage of photosynthesis, when subjected to a two-phase incubation protocol in a second stage of H2 production: anaerobic incubation in the dark followed by the exposure to light illumination. The anaerobic incubation induced hydrogenase activity to catalyse H? evolution in the following phase of light illumination. H,) evolution strongly depended upon the duration of anaerobic incubation, deprivation of sulphur (S) from the medium and the medium pH. An optimal anaerobic incubation period of 32 h gave the maximum H2 evolution in the second phase in the absence of sulphur. Evolution of H,) was greatly enhanced by 13 times when S was deprived from the medium. This result suggests that S plays a critical role in the mediation of H-2 evolution from R subcordiformis. A 14-fold increase in H-2 production was obtained when the medium pH increased from 5 to 8; with a sharp decline at pH above eight. H-2 evolution was enhanced by 30-50% when supplementing the optimal concentrations of 25 mM acetate and 37.5 mM glucose. (C) 2003 Elsevier B.V. All rights reserved.