921 resultados para Glass ceiling
Resumo:
The glass transition temperature (T-g) of mixtures of polystyrene (PS) with different molecular weight and of blends of poly(2,6-dimethyl-p-phenylene oxide) (PPO) and polystyrene with different molecular weight (DMWPS) was studied by a DSC method. For the whole range of composition, the curves of T-g vs composition obtained by experiment were compared with predictions from the Fox, Gordon-Taylor, Couchman and Lu-Weiss, equations. It was found that the experimental results were not in agreement with those from the Fox, Gordon-TayIor and Couchman equations for the binary mixtures of DMWPS, where the interaction parameter chi was approximately zero. However, for the blends PPO/DMWPS (chi < 0), with an increase of molecular weight of PS, it was shown that the experimental results fitted well with those obtained from the Couchman, Gordon-Taylor and Fox equations, respectively. Furthermore, the Gordon-Taylor equation was nearly identical to the Lu-Weiss equation when \chi\ was not very large. Further, the dependence of the change of heat capacity associated with the glass transition (Delta C-p) on the molecular weight of PS was investigated and an empirical equation was presented. (C) 1997 Elsevier Science Ltd.
Resumo:
The structural relaxation process of an inorganic glass (Li2O . 2SiO(2)) at an ageing temperature of 703 K for an ageing time of 1 h has been studied by differential scanning calorimetry. A four-parameter model-the Tool-Narayanaswamy-Moynihan (TNM)-model was applied to simulate the normalized specific heat curve measured. A set of optimized parameters, Delta h*/R,beta,InA, and x was obtained. Then the effects of variation of each adjustable parameter on the calculated specific heat were summarized. (C) 1997 Elsevier Science S.A.
Resumo:
Abnormal IR spectra of CO adsorbed at the surface of glass carbon electrode modified with polypyrrole film with Pt microparticles are reported.
Resumo:
The thermal behaviour and ion-transport properties of a comb polymer electrolyte CP350/LiSCN based on methyl vinyl ether/maleic anhydride copolymer with oligo-oxyethylene side chains were studied by means of DSC and ac impedance method. The two glass transition temperatures which can be attributed to side chains and main chains respectively were found to increase with increasing salt concentration. Conductivities which displayed non-Arrhenius behaviour were analyzed by using Vogel-Tammann-Fulcher equation and interpreted on the basis of the configurational entropy model derived by Gibbs and coworkers. The optimum ionic conductivity at 25 degrees C achieved was 2.19x10(-5)S/cm.
Resumo:
A comb polymer (CP350) with oligo-oxyethylene side chains of the type -(CH2CH2O)(7)CH3 was prepared from methyl vinyl ether/maleic anhydride copolymer and poly(ethylene glycol) methyl ether. The polymer can dissolve LiNO3 salt to form homogeneous amorphous polymer electrolyte. This electrolyte system was first found to have two class glass transitions, and the two T(g)s were observed to increase with increasing salt content. The ionic conduction was measured by using the complex impedance method, and conductivities were investigated as functions of temperature and salt concentration. At 25 degrees C, the ionic conductivity maximum of this system can get to 3.72 X 10(-5) S/cm at the [Li]/ [EO] ratio of 0.057. The appearance of the conductivity maximum has been interpreted as being due to the effect of T-g and the so called physical crosslinks. The temperature dependence of the ionic conductivity displaying non-Arrhenius behaviour can be analyzed using the Vogel-Tammann-Fulcher equation and interpreted on the basis of the configurational entropy model.
Resumo:
A new amorphous comblike polymer (CBP) based on methylvinyl ether/maleic anhydride altering copolymer backbone and on oligooxyethylene side chain was synthesized. The dynamic mechanical properties of CBP and its Li salt complexes were investigated by means of DDV-11-EA type viscoelastic spectrometry. Results showed that there were two glass transitions (alpha-transition and beta-transition) in the temperature range from -100 to 100 degrees C. The beta-transition was assigned to oligo-PEO side chains and the temperature of beta-transition increases with increasing Li salt content. The alpha-transition was assigned to the main chain of CBP. The temperature of the alpha-transition (T-alpha) is also dependent upon the Li-salt content, but not monotonic. The value of T-alpha lies between 30-45 degrees C in the Li salt concentration range studied, near room temperature. It was found that the CBP-Li salt complexes showed an unusual dependence of ionic conductivity on Li salt content. There are two peaks in the plot of the ionic conductivity vs. Li salt concentration, which has been ascribed to the movability of the CBP main chain at ambient temperature. The temperature dependence bf the ionic conductivity indicated that the Arrhenius relationship was not obeyed, and the plot of log sigma against 1/(T - T-0) showed the unusual dual VTF behavior when using side chain glass transition temperature (T-beta) as T-0.
Resumo:
The microphase separation, glass transition and crystallization of two series of tetrahydrofuran-methyl methacrylate diblock copolymers (PTHF-b-PMMA), one with a given PTHF block of M(n) = 5100 and the other with a given PTHF block of (M) over bar(n) = 7000, were studied in this present work. In the case of solution-cast materials, the microphase separation of the copolymer takes place first, with crystallization then gradually starting in the formed PTHF microphase. The T-g of the PMMA microphase shows a strong dependence on the molecular weight of the PMMA block, while the T-g of the PTHF microphase shows a strong dependence on the copolymer composition. The non-isothermal crystallization temperature (T-c) of the diblock copolymer decreases rapidly and continuously with the increase in the amorphous PMMA weight fraction; the lowest T-c of the copolymer is ca. 35 K lower than the T-c of the PTHF homopolymer. There also exists a T-c dependence on the molecular weight of the PTHF block. In addition, when the major component of the copolymer is PMMA, a strong dependence of the crystallizability of the copolymer on the molecular weight of the PTHF block is observed; the higher the molecular weight, then the stronger its crystallizability. The melting temperature of the block copolymer is dependent on the copolymer composition and the molecular weight of its crystallizable block. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
The mechanical properties of glass fiber-reinforced phenolphthalein poly(ether ketone)/poly(phenylene sulfide) (PEK-C/PPS) composites have been studied. The morphologies of fracture surfaces were observed by scanning electron microscope. Blending a semicrystalline component, PPS, can improve markedly the mechanical properties of glass fiber-reinforced PEK-C composites. These results can be attributed to the improvement of fiber/matrix interfacial adhesion and higher fiber aspect ratio. (C) 1996 John Wiley & Sons, Inc.
Resumo:
The effects of mechanical alloying on the solubility in a Ag-Gd solid solution have been investigated. The study shows that the solubility of Gd in Ag can be extended to about 5 at. % Gd by mechanical alloying from the equilibrium solubility of less than 0.95 at. % Gd. Ag85Gd15 prepared by mechanical alloying exhibits a spin-glass-type transition at similar to 5 K. A Curie-Weiss behavior at higher temperatures and x-ray patterns of the material indicate that Gd atoms are either dissolved in the Ag matrix or in the form of small clusters of diameters of a few nanometers;
Resumo:
The glass transition behaviour, microphase separation morphology and crystallization of poly(vinyl alcohol)-g-poly(methyl methacrylate) graft copolymers (PVA-g-PMMA) were studied. A lamellar microphase separation morphology was formed, even for a copolyme
Resumo:
Clinopyroxene NaAlSi2O6 was synthesized under varying pressures of 3.0-5.0GPa and at the temperature range of 1150.1750 degrees C, for periods of 1.480min. The glass material was completely transformed into homogeneous penetrating fibrous texture of clino
Resumo:
The glass transition temperature (T(g)) of cyclic polystyrene was measured by differential scanning calorimetry. There was a marked difference in the glass transition behaviour between cyclic and linear polystyrene. In the low molecular weight region (M(n) < 5 x 10(3)), the T(g) of the cyclic polystyrene increased with decreasing M(n), contrary to that of linear polystyrene. With M(n) higher than 5 x 10(3), the T(g) of cyclic polystyrene increased with increasing M(n). The T(g) of cyclic and linear polystyrene approached the same constant value when the M(n) was high enough (M(n) > 10(5)). Combining the results of specific volume, it is believed that the variation of T(g) with molecular weight does not depend only on free volume effects but that configurational entropy is also an important factor.
Resumo:
A new relationship, which correlates the glass transition temperature (T(g)) with other molecular parameters, is developed by using Flory's lattice statistics of polymer chain and taking the dynamic segment as the basic statistical unit. The dependences of T(g) on the chain stiffness factor (sigma-2), dynamic stiffness factor (beta = -d ln-sigma-2/dT) and molecular weight of polymer are discussed in detail based on the theory. The theory is compared with experimental data for many linear polymers and good agreement is obtained. It is shown that T(g) is essentially governed by the chain stiffness factor at T(g). Moreover, a simple correlation between the parameter K(g) of the Fox-Flory equation (T(g) = T(g)infinity - K(g)/M(n)) and other molecular parameters is deduced. The agreement between theoretical predictions and experimental measurements of K(g) has been found to be satisfactory for many polymers.
Resumo:
Genetic transformation by electroporation of protoplasts is a standard procedure for many plants. However, for the genus Porphyra, the method is not effective because of low viability of protoplasts and is a time-consuming and expensive procedure. Based on the life history of Porphyra, a spore-targeted strategy of genetic transformation was developed, that is, using fresh conchospores of Porphyra haitanensis Chang & Zheng transformed by agitation with glass beads. A SV40 promoter-driven lacZ reporter gene was expressed in conchospores 48 h after the agitation. More transformants were obtained by increasing the agitation time from 10 to 25 s. The maximum number of transformants was more than six out of 1 million agitated conchospores. Transfer of a SV40 promoter-driven egfp gene into conchospores resulted in significant green GFP fluorescence. The expression of lacZ and egfp revealed that this strategy of spore-targeted transformation using glass bead agitation is feasible in P. haitanensis and that the SV40 promoter is effective for monitoring expression of foreign genes in this red algal species.
Resumo:
A transient transformation system for the unicellular marine green alga, Platymonas subcordiformis, was established in this study. We introduced the pEGFP-N1 vector into P. subcordiformis with a glass bead method. P. subcordiformis was incubated in cell wall lytic enzymes (abalone acetone powder and cellulase solutions) to degrade the cell wall. The applicable conditions for production of viable protoplasts were pH 6.5, 25 degrees C, and 3 h of enzyme treatment. The protoplast yield was 61.2% when P. subcordiformis cells were added to the enzyme solution at a concentration of 10(7) cell ml(-1). The protoplasts were immediately transformed with the pEGFP-N1 vector using glass-bead method. The transformation frequency was about 10(-5), and there was no GFP activity observed in either the negative or the blank controls. This study indicated that GFP was a sensitively transgenic reporter for P. subcordiformis, and the method of cell wall enzymolysis followed by glass bead agitation was applicable for the transformation of P. subcordiformis.