899 resultados para Glaskeramik, Dielektrika, Paraelektrika, TiO2, GHz
Resumo:
Today, environmental impact associated with pollution treatment is a matter of great concern. A method is proposed for evaluating environmental risk associated with Advanced Oxidation Processes (AOPs) applied to wastewater treatment. The method is based on the type of pollution (wastewater, solids, air or soil) and on materials and energy consumption. An Environmental Risk Index (E), constructed from numerical criteria provided, is presented for environmental comparison of processes and/or operations. The Operation Environmental Risk Index (EOi) for each of the unit operations involved in the process and the Aspects Environmental Risk Index (EAj) for process conditions were also estimated. Relative indexes were calculated to evaluate the risk of each operation (E/NOP) or aspect (E/NAS) involved in the process, and the percentage of the maximum achievable for each operation and aspect was found. A practical application of the method is presented for two AOPs: photo-Fenton and heterogeneous photocatalysis with suspended TiO2 in Solarbox. The results report the environmental risks associated with each process, so that AOPs tested and the operations involved with them can be compared.
Resumo:
The osseointegrated titanium implants are reliable and safe alternatives to treatments for long periods of time. For surface modification, thermal aspersion of TiO2 was used. The samples with and without TiO2 were treated with NaOH and SBF in order to obtain a layer of HA. Characterization was done by SEM and FTIR. The images of HA obtained by SEM show a uniform morphology and a porous structure with spherical particles. The IR spectra show that the surface of Ticp/ TiO2 is more favorable for the HA deposit, as can be seen by the increase of the crystalline structure and the very intense and defined bands of the OH group of HA that is verified about 3571 and 630 cm-1. Thus the Ticp/ TiO2 surface presents a satisfactory nucleation of HA when compared to Ticp.
Resumo:
Destruction of Padron® (dye and picloram) was evaluated using a photoreactor and a solar reactor. Photolysis was observed using only a germicide lamp (GL). Black light (BL) and H2O2 (172 mmol L-1) promoted a conversion of 49% and 6% of dye and picloram, respectively. Photocatalytic processes were more efficient using TiO2/GL (96%-dye; 60%-picloram) than TiO2/BL (44%-dye; 40%-picloram). Photolysis using sunlight was not observed during PadronÒ recirculation in the reactor constructed with four borosilicate tubes. Meanwhile, adding H2O2 resulted in 12% conversion of dissolved organic compounds. Finally, the most efficient mineralization (60%) was obtained using the Fenton reaction ( H2O2-176 mmol L-1; FeSO4x6H2O-90 mmol L-1) and sunlight.
Resumo:
Tässä työssä toteutetaan IEEE 802.16-2004 standardiin perustuva langaton WiMAX tietoliikenneverkko, sekä tutkitaan etenemismallien soveltuvuutta satama-alueelle. Myös muiden verkkoratkaisujen soveltuvuutta pohditaan. Lisäksi tutkitaan sääolosuhteiden sekä päätelaitteen liikkumisnopeuden vaikutuksia yhteyteen. Satama-alueella on teräksestä valmistettuja merikontteja pinottuina päällekkäin, ja ne vaikeuttavat langattomien signaalien etenemistä. Merikonttien pinot säilyttävät tietyn maksimikorkeuden johtuen työkoneiden rajallisesta kyvystä pinota niitä. Langattomien signaalien etenemiselle erilaisissa ympäristöissä on kehitetty etenemismalleja. Etenemisallien avulla voidaan pyrkiä ennustamaan signaalin vahvuutta eri etäisyyksillä tukiasemasta. Etenemismallit kuvaavat ympäristön aiheuttamaa signaalin vaimenemista erilaisten muuttujien avulla. Langattoman tietoliikenneverkon toteutus ongelmatilanteineen dokumentoitiin ja alueella tehtiin kuuluvuusmittauksia. Löydettiin etenemismalli ja muuttujat, joiden avulla lasketut tulokset vastasivat mitattuja tuloksia hyvin. Myös sääolosuhteiden sekä päätelaitteen liikkumisnopeuden vaikutusta signaalin vahvuuteen tutkittiin. Vesi- ja lumisateen sekä sumun vaikutuksen todettiin olevan merkityksetön verkon käyttämällä 3.5 GHz taajuusalueella. Myöskään päätelaitteen liikkumisnopeuden ei todettu vaikuttavan toiminnallisuuteen 20-30 kilometrin tuntinopeudella, jolla työkoneet alueella liikkuvat.
Resumo:
This work presents a study on the separation of Fe(III) and Ti(IV) from sulfuric acid leaching solutions of ilmenite (FeTiO3) using liquid-liquid extraction with D2EHPA in n-dodecane as extracting agent. The distribution coefficients (K D) of the elements related to free acidity and concentration of Fe(III) and Ti(IV) were determined. Free acidity was changed from 3x10-2 to 11.88 mol L-1 and D2EHPA concentration was fixed at 1.5 mol L-1. Recovery of final products as well as recycling of wastes generated in the process were also investigated. The LLE process as a feasible alternative to obtain high-purity TiO2.
Resumo:
Three technologies were tested (TiO2/UV, H2O2/UV, and TiO2/H2O2/UV) for the degradation and color removal of a 25 mg L-1 mixture of three acid dyes: Blue 9, Red 18, and Yellow 23. A low speed rotating disc reactor (20 rpm) and a H2O2 concentration of 2.5 mmol L-1 were used. The dyes did not significantly undergo photolysis, although they were all degraded by the studied advanced oxidation processes. With the TiO2/H2O2/UV process, a strong synergism was observed (color removal reached 100%). Pseudo first order kinetic constants were estimated for all processes, as well as the respective apparent photonic efficiencies.
Resumo:
The concern about aquatic ecosystems and the potential risk of drinking water contamination by pharmaceuticals have stimulated the study of processes for the efficient degradation of these contaminants, since the conventional treatment have been inefficient on that purpose. The advanced oxidation processes (AOPs) appear as viable alternatives due to their efficiency on the degradation of different classes of organic contaminants. This review presents an overview of the main AOP (O3, H2O2/UV, TiO2/UV, Fenton and photo-Fenton) which have been applied to the degradation of different pharmaceuticals. The main results obtained, intermediates identified and toxicity data are presented.
Resumo:
Bisphenol A (BPA) is a monomer used in epoxy resin and polycarbonate manufacture. This molecule is considered as an endocrine disruptor that causes different diseases. The human exposition to this non biodegrable substance is increasing in the time; in particular, water is contaminated by industrial remainder flow. In this article heterogeneous photo degradation of a solution of BPA in water solution using a catalytic photo reactor with UV light and titanium dioxide (TiO2) was evaluated. High performance liquid chromatography (HPLC) was used to analyze the photo degradation of BPA solutions. The influence of titanium dioxide amount, BPA concentration, reaction temperature and the catalyst state like suspension and immobilized were also determinated. The highest elimination of BPA was 83.2%, in 240 min, beginning with 0.05 mM of BPA and 100 mg/L of TiO2 in suspension.
Resumo:
Advanced oxidative processes (AOPs) are based on chemical processes that can generate free radicals, such as hydroxyl radicals (.OH) which are strong, non-selective oxidant species that react with the vast majority of organic compounds. Nanostructured semiconductors, especially titanium dioxide (TiO2) in the anatase phase, are well-established photocatalysts for this process, which have proved to be useful in the degradation of dyes, pesticides and other contaminants. Research in different strategies for the synthesis of nanostructured semiconductors, with particular characteristic is currently a topic of interest in many studies. Thus, this paper presents a review about various synthesis strategies of nanostructured photocatalysts.
Resumo:
The tebuconazole photocatalytic degradation kinetics was studied in a batch reactor using TiO2 (P25-Degussa) as catalyst and a high pressure mercury lamp. The photolysis, adsorption and irradiation effects in the reaction rate were evaluated. Afterward, the suspension catalyst concentration and initial pH to the maximum reaction rate was determined. It was observed that the reaction rate can be approached by a pseudo-first order, with a maximum kinetics constant at 260 mg L-1catalyst concentration and pH 7.7.
Resumo:
In this work the photocatalytic degradation of sulfametoxazole, trimethoprim and potassium diclofenac was evaluated by using TiO2 and ZnO photocatalysts. In optimized experimental conditions (pH 4, TiO2: 50 mg) the TiO2-photocatalysis allowed an almost total degradation of the studied drugs with mineralization of about 80% at reaction times of 120 min. Some mechanistic differences were observed between TiO2 and ZnO in the degradation study involving potassium diclofenac. At the first reaction times the use of ZnO leads to generation of transient species that strongly absorb in the UV spectral region, a fact not observed in studies involving TiO2.
Resumo:
This work proposes the study of heterogeneous photocatalysis using TiO2 impregnated in zeolites beta, ZSM-5, mordenite, NaXb, NaXp and NaY for the decomposition of methylene blue. The catalysts were characterized by XRD, IR, textural analyses by N2 adsorption, SEM, DRS and the reaction of decomposition was monitored by UV visible. The results indicated that didn't have structural changes in the catalysts after Ti impregnations, only in the case of NaY and NaX zeolites. The better photocatalyst to metylene blue decomposition was beta/Ti zeolite due had one structure more accessible (with bigger porous) helping in TiO2 dispersion and catalytic active.
Resumo:
The development of analytical procedures to evaluate transesterification process is still a challenge in biodiesel production. Then, this paper shows an electroanalytical methodology to transesterification process assessment, proposing the application of nanostructured TiO2 electrodes. The results showed, for sunflower oil - methanol reaction catalyzed by KOH, a reduction peak in - 1050 mV and the gradual appearance of a second peak at - 1160 mV. This peak was observed as originated by the transesterification process and is probably related to intermediates. By measuring the intensity of this peak a kinetic profile was determined, showing that the conversion is almost finished in 2 h.
Resumo:
This work describes three C8-stationary phases for high performance liquid chromatography based on silica metallized with ZrO2, TiO2 or Al2O3 layers, having poly(methyloctylsiloxane) immobilized onto their surfaces. The stationary phases were characterized using XRF, XAS, FTIR, SEM and elemental analysis to determine the physical characteristics of the oxide and polysiloxane layers formed on the surfaces and chromatographically to evaluate the separation parameters. The results show the changes on the silica surface and allowed proposing a structure for the oxide layer, being observed tetrahedral and octahedral structures, what is completely new in the literature. The formation of a homogeneous layer of metallic oxide (TiO2 and ZrO2) was observed on the silica. The C8-titanized and C8-aluminized stationary phases presented good chromatographic performances, with good values of asymmetry and efficiency. All stationary phase presented few loss of the polymeric layer after the HPLC, indicating that this layer is well attached on the metalized support.
Resumo:
In this study, photoelectrochemical solar cells based on bismuth tungstate electrodes were evaluated. Bi2WO6 was synthesized by a hydrothermal method and characterized by scanning electron microscopy, UV-Vis reflectance spectroscopy, and X-ray powder diffraction. For comparison, solar cells based on TiO2 semiconductor electrodes were evaluated. Photoelectrochemical response of Grätzel-type solar cells based on these semiconductors and their corresponding sensitization with two inexpensive phthalocyanines dyes were determined. Bi2WO6-based solar cells presented higher values of photocurrent and efficiency than those obtained with TiO2 electrodes, even without sensitization. These results portray solar cells based on Bi2WO6 as promising devices for solar energy conversion owing to lower cost of production and ease of acquisition.