969 resultados para Geographical variation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic variation of Contracaecum ogmorhini (sensu lato) populations from different otariid seals of the northern and southern hemisphere was studied on the basis of 18 enzyme loci as well as preliminary sequence analysis of the mitochondrial cyt b gene (260 bp). Samples were collected from Zalophus californianus in the boreal region and from Arctocephalus pusillus pusillus, A. pusillus doriferus and A. australis from the austral region. Marked genetic heterogeneity was found between C. ogmorhini (sensu lato) samples from the boreal and austral region, respectively. Two loci (Mdh-2 and NADHdh) showed fixed differences and a further three loci (Iddh, Mdh-1 and 6Pgdh) were highly differentiated between boreal and austral samples. Their average genetic distance was DNei = 0.36 at isozyme level. At mitochondrial DNA level, an average proportion of nucleotide substitution of 3.7% was observed. These findings support the existence of two distinct sibling species, for which the names C. ogmorhini (sensu stricto) and C. margolisi n. sp., respectively, for the austral and boreal taxon, are proposed. A description for C. margolisi n. sp. is provided. No diagnostic morphological characters have so far been detected; on the other hand, two enzyme loci, Mdh-2 and NADHdh, fully diagnostic between the two species, can be used for the routine identification of males, females and larval stages. Mirounga leonina was found to host C. ogmorhini (s.s.) inmixed infections with C. osculatum (s.l.) (of which C. ogmorhini (s.l.) was in the past considered to be a synonym) and C. miroungae; no hybrid genotypes were found,confirming the reproductive isolation of these three anisakid species. The hosts and geographical range so far recorded for C. margolisi n. sp. and C. ogmorhini (s.s.) are given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sequence variation in the mitochondrial control region was studied in the Mediterranean rainbow wrasse (Coris julis), a species with pronounced pelagic larval phase inhabiting the Mediterranean Sea and the adjacent coastal eastern Atlantic Ocean. A total of 309 specimens from 19 sampling sites were analysed with the aim of elucidating patterns of molecular variation between the Atlantic and the Mediterranean as well as within the Mediterranean Sea. Phylogeographic analyses revealed a pronounced structuring into a Mediterranean and an Atlantic group. Samples from a site at the Moroccan Mediterranean coast in the Alboran Sea showed intermediate frequencies of “Mediterranean” and “Atlantic” haplotypes. We recognised a departure from molecular neutrality and a star-like genealogy for samples from the Mediterranean Sea, which we propose to have happened due to a recent demographic expansion. The results are discussed in the light of previous studies on molecular variation in fish species between the Atlantic and the Mediterranean and within the Mediterranean.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protogynous sequential hermaphroditism is very common in marine fish. Despite a large number of studies on various aspects of sequential hermaphroditism in fish, the relationship between body shape and colour during growth in dichromatic species has not been assessed. Using geometric morphometrics, the present study explores the relationship between growth, body shape and colouration in Coris julis (L. 1758), a small protogynous labrid species with distinct colour phases. Results show that body shape change during growth is independent of change in colour phase, a result which can be explained by the biology of the species and by the social control of sex change. Also, during growth the body grows deeper and the head has a steeper profile. It is hypothesized that a deeper body and a steeper profile might have a function in agonistic interactions between terminal phase males and that the marked chromatic difference between colour phases allows the lack of strict interdependence of body shape and colour during growth.