960 resultados para Geographic Range
Resumo:
The relationship between toxic marine microalgae species and climate change has become a high profile and well discussed topic in recent years, with research focusing on the possible future impacts of changing hydrological conditions on Harmful Algal Bloom (HAB) species around the world. However, there is very little literature concerning the epidemiology of these species on marine organisms and human health. Here, we examine the current state of toxic microalgae species around the UK, in two ways: first we describe the key toxic syndromes and gather together the disparate reported data on their epidemiology from UK records and monitoring procedures. Secondly, using NHS hospital admissions and GP records from Wales, we attempt to quantify the incidence of shellfish poisoning from an independent source. We show that within the UK, outbreaks of shellfish poisoning are rare but occurring on a yearly basis in different regions and affecting a diverse range of molluscan shellfish and other marine organisms. We also show that the abundance of a species does not necessarily correlate to the rate of toxic events. Based on routine hospital records, the numbers of shellfish poisonings in the UK are very low, but the identification of the toxin involved, or even a confirmation of a poisoning event is extremely difficult to diagnose. An effective shellfish monitoring system, which shuts down aquaculture sites when toxins exceed regularity limits, has clearly prevented serious impact to human health, and remains the only viable means of monitoring the potential threat to human health. However, the closure of these sites has an adverse economic impact, and the monitoring system does not include all toxic plankton. The possible geographic spreading of toxic microalgae species is therefore a concern, as warmer waters in the Atlantic could suit several species with southern biogeographical affinities enabling them to occupy the coastal regions of the UK, but which are not yet monitored or considered to be detrimental.
Resumo:
The comment by Votier et al. (2008) on our recently published article (Wynn et al. 2007) contains two main criticisms: (i) that our analytical approach is inappropriate and (ii) that we have failed to acknowledge other factors that may have contributed to the change in Balearic Shearwater numbers recorded throughout northwest European waters. We strongly disagree with both these criticisms.
Resumo:
While evidence for optimal random search patterns, known as Lévy walks, in empirical movement data is mounting for a growing list of taxa spanning motile cells to humans, there is still much debate concerning the theoretical generality of Lévy walk optimisation. Here, using a new and robust simulation environment, we investigate in the most detailed study to date (24×10(6) simulations) the foraging and search efficiencies of 2-D Lévy walks with a range of exponents, target resource distributions and several competing models. We find strong and comprehensive support for the predictions of the Lévy flight foraging hypothesis and in particular for the optimality of inverse square distributions of move step-lengths across a much broader range of resource densities and distributions than previously realised. Further support for the evolutionary advantage of Lévy walk movement patterns is provided by an investigation into the 'feast and famine' effect, with Lévy foragers in heterogeneous environments experiencing fewer long 'famines' than other types of searchers. Therefore overall, optimal Lévy foraging results in more predictable resources in unpredictable environments.
Large-Scale Geographic Variation in Distribution and Abundance of Australian Deep-Water Kelp Forests