999 resultados para Genetic code
Resumo:
Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention.
Resumo:
Studies based on shell or reproductive organ morphology and genetic considerations suggest extensive intraspecific variation in Biomphalaria snails. The high variability at the morphological and genetic levels, as well as the small size of some specimens and similarities between species complicate the correct identification of these snails. Here we review our work using methods based on polymerase chain reaction (PCR) amplification for analysis of genetic variation and identification of Biomphalaria snails from Brazil, Argentina, Uruguay and Paraguay. Arbitrarily primed-PCR revealed that the genome of B. glabrata exihibits a remarkable degree of intraespecific polymorphism. Low stringency-PCR using primers for 18S rRNA permited the identification of B. glabrata, B. tenagophila and B. occidentalis. The study of individuals obtained from geographically distinct populations exhibits significant intraspecific DNA polymorphism, however specimens from the same species, exhibit some species specific LSPs. We also showed that PCR-restriction fragment of length polymorphism of the internal transcribed spacer region of Biomphalaria rDNA, using DdeI permits the differentiation of the three intermediate hosts of Schistosoma mansoni. The molecular biological techniques used in our studies are very useful for the generation of new knowledge concerning the systematics and population genetics of Biomphalaria snails.
Resumo:
Elevated plasma urate levels are associated with metabolic, cardiovascular, and renal diseases. Urate may also form crystals, which can be deposited in joints causing gout and in kidney tubules inducing nephrolithiasis. In mice, plasma urate levels are controlled by hepatic breakdown, as well as, by incompletely understood renal processes of reabsorption and secretion. Here, we investigated the role of the recently identified urate transporter, Glut9, in the physiological control of urate homeostasis using mice with systemic or liver-specific inactivation of the Glut9 gene. We show that Glut9 is expressed in the basolateral membrane of hepatocytes and in both apical and basolateral membranes of the distal nephron. Mice with systemic knockout of Glut9 display moderate hyperuricemia, massive hyperuricosuria, and an early-onset nephropathy, characterized by obstructive lithiasis, tubulointerstitial inflammation, and progressive inflammatory fibrosis of the cortex, as well as, mild renal insufficiency. In contrast, liver-specific inactivation of the Glut9 gene in adult mice leads to severe hyperuricemia and hyperuricosuria, in the absence of urate nephropathy or any structural abnormality of the kidney. Together, our data show that Glut9 plays a major role in urate homeostasis by its dual role in urate handling in the kidney and uptake in the liver.
Resumo:
Cloud computing has recently become very popular, and several bioinformatics applications exist already in that domain. The aim of this article is to analyse a current cloud system with respect to usability, benchmark its performance and compare its user friendliness with a conventional cluster job submission system. Given the current hype on the theme, user expectations are rather high, but current results show that neither the price/performance ratio nor the usage model is very satisfactory for large-scale embarrassingly parallel applications. However, for small to medium scale applications that require CPU time at certain peak times the cloud is a suitable alternative.
Resumo:
The genetic population of Triatoma sordida group 1, a secondary vector of Chagas disease in Bolivia, was studied by multi-locus enzyme electrophoresis. A total of 253 nymphal and adult specimens collected from seven neighbouring localities in the Velasco Province, Department of Santa Cruz, were processed. The relatively low genetic variability was confirmed for this species (rate of polymorphism: 0.20). The absence of genetic disequilibrium detected within the seven localities was demonstrated. A geographical structuration appears between localities with distances greater than 20 km apart. Although T. sordida presents a relatively reduced dispersive capacity, its panmictic unit is wider than compared with T. infestans. Genetic distances between T. sordida populations were correlated with geographic distance. Gene flow between geographic populations of T. sordida provides an efficient framework for effective vigilance and control protocols.
Resumo:
Twenty-six human respiratory syncytial virus strains (subgroup A) isolated from three outbreaks in Havana City during the period 1994/95, 1995/96 and 1996/97 were analyzed to determine their antigenic and genetic relationships. Analyses were performed by monoclonal antibodies and restriction mapping (N gene) following amplification of the select region of the virus genome by polymerase chain reaction. All isolated strains were classified as subgroup A by monoclonal antibodies and they showed a restriction pattern NP4 that belonged to subgroup A. Thus the results obtained in this work, showed a close relation (100%) between antigenic and genetic characterization of the isolated strains in our laboratory. These methods permit the examination of large numbers of isolates by molecular techniques, simplifying the researchs into the molecular epidemiology of the virus.
Resumo:
Abstract :The majority of land plants form the symbiosis with arbuscular mycorrhizal fungi (AMF). The AM symbiosis has existed for hundreds of millions of years but little or no specificity seems to have co- evolved between the partners and only about 200 morphospecies of AMF are known. The fungi supply the plants most notably with phosphate in exchange for carbohydrates. The fungi improve plant growth, protect them against pathogens and herbivores and the symbiosis plays a key role in ecosystem productivity and plant diversity. The fungi are coenocytic, grow clonally and no sexual stage in their life cycle is known. For these reasons, they are presumed ancient asexuals. Evidence suggests that AMF contain populations of genetically different nucleotypes coexisting in a common cytoplasm. Consequently, the nucleotype content of new clonal offspring could potentially be altered by segregation of nuclei at spore formation and by genetic exchange between different AMF. Given the importance of AMF, it is surprising that remarkably little is known about the genetics and genomics of the fungi.The main goal of this thesis was to investigate the combined effects of plant species differences and of genetic exchange and segregation in AMF on the symbiosis. This work showed that single spore progeny can receive a different assortment of nucleotypes compared to their parent and compared to other single spore progeny. This is the first direct evidence that segregation occurs in AMF. We then showed that both genetic exchange and segregation can lead to new progeny that differentially alter plant growth compared to their parents. We also found that genetic exchange and segregation can lead to different development of the fungus during the establishment of the symbiosis. Finally, we found that a shift of host species can differentially alter the phenotypes and genotypes of AMF progeny obtained by genetic exchange and segregation compared to their parents.Overall, this study confirms the multigenomic state of the AMF Glomus intraradices because our findings are possible only if the fungus contains genetically different nuclei. We demonstrated the importance of the processes of genetic exchange and segregation to produce, in a very short time span, new progeny with novel symbiotic effects. Moreover, our results suggest that different host species could affect the fate of different nucleotypes following genetic exchange and segregation in AMF, and can potentially contribute to the maintenance of genetic diversity within AMF individuals. This work brings new insights into understanding how plants and fungi have coevolved and how the genetic diversity in AMF can be maintained. We recommend that the intra-ir1dividual AMF diversity and these processes should be considered in future research on this symbiosis.Résumé :La majorité des plantes terrestres forment des symbioses avec les champignons endomycorhiziens arbusculaires (CEA). Cette symbiose existe depuis plusieurs centaines de millions d'années mais peu ou pas de spécificité semble avoir co-évoluée entre les partenaires et seulement 200 morpho-espèces de CEA sont connues. Le champignon fournit surtout aux plantes du phosphate en échange de carbohydrates. Le champignon augmente la croissance des plantes, les protège contre des pathogènes et herbivores et la symbiose joue un rôle clé dans la productivité des écosystèmes et de la diversité des plantes. Les CEA sont coenocytiques, se reproduisent clonalement et aucune étape sexuée n'est connue dans leur cycle de vie. Pour ces raisons, ils sont présumés comme anciens asexués. Des preuves suggèrent que les CEA ont des populations de nucleotypes différents coexistant dans un cytoplasme commun. Par conséquent, le contenu en nucleotype des nouveaux descendants clonaux pourrait être altéré par la ségrégation des noyaux lors de la fonnation des spores et par l'échange génétique entre différents CEA. Etant donné l'importance des CEA, il est surprenant que si peu soit connu sur la génétique et la génomique du champignon.Le principal but de cette thèse a été d'étudier les effets combinés de différentes espèces de plantes et des mécanismes d'échange génétique et de ségrégation chez les CEA sur la symbiose. Ce travail a montré que chaque nouvelle spore produite pouvait recevoir un assortiment différent de noyaux comparé au parent ou comparé à d'autres nouvelles spores. Ceci est la première preuve directe que la ségrégation peut se produire chez les CEA. Nous avons ensuite montré qu'à la fois l'échange génétique et la ségrégation pouvaient mener à de nouveaux descendants qui altèrent différemment la croissance des plantes, comparé à leurs parents. Nous avons également trouvé que l'échange génétique et la ségrégation pouvaient entraîner des développements différents du champignon pendant l'établissement de la symbiose. Pour finir, nous avons trouvé qu'un changement d'espèce de l'hôte pouvait altérer différemment les phénotypes et génotypes des descendants issus d'échange génétique et de ségrégation, comparé à leurs parents.Globalement, cette étude confirme l'état multigénomique du CEA Glumus intraradices car nous résultats sont possibles seulement si le champignon possède des noyaux génétiquement différents. Nous avons démontrés l'importance des mécanismes d'échange génétique et de ségrégation pour produire en très peu de temps de nouveaux descendants ayant des effets symbiotiques nouveaux. De plus, nos résultats suggèrent que différentes espèces de plantes peuvent agir sur le devenir des nucleotypes après l'échange génétique et la ségrégation chez les CEA, et pourraient contribuer à la maintenance de la diversité génétique au sein d'un même CEA. Ce travail apporte des éléments nouveaux pour comprendre comment les plantes et les champignons ont coévolué et comment la diversité génétique chez les CEA peut être maintenue. Nous recommandons de considérer la diversité génétique intra-individuelle des CEA et ces mécanismes lors de futures recherches sur cette symbiose.
Resumo:
The genetic diversity of three temperate fruit tree phytoplasmas ‘Candidatus Phytoplasma prunorum’, ‘Ca. P. mali’ and ‘Ca. P. pyri’ has been established by multilocus sequence analysis. Among the four genetic loci used, the genes imp and aceF distinguished 30 and 24 genotypes, respectively, and showed the highest variability. Percentage of substitution for imp ranged from 50 to 68% according to species. Percentage of substitution varied between 9 and 12% for aceF, whereas it was between 5 and 6% for pnp and secY. In the case of ‘Ca P. prunorum’ the three most prevalent aceF genotypes were detected in both plants and insect vectors, confirming that the prevalent isolates are propagated by insects. The four isolates known to be hypo-virulent had the same aceF sequence, indicating a possible monophyletic origin. Haplotype network reconstructed by eBURST revealed that among the 34 haplotypes of ‘Ca. P. prunorum’, the four hypo-virulent isolates also grouped together in the same clade. Genotyping of some Spanish and Azerbaijanese ‘Ca. P. pyri’ isolates showed that they shared some alleles with ‘Ca. P. prunorum’, supporting for the first time to our knowledge, the existence of inter-species recombination between these two species.
Resumo:
It is generally accepted that most plant populations are locally adapted. Yet, understanding how environmental forces give rise to adaptive genetic variation is a challenge in conservation genetics and crucial to the preservation of species under rapidly changing climatic conditions. Environmental variation, phylogeographic history, and population demographic processes all contribute to spatially structured genetic variation, however few current models attempt to separate these confounding effects. To illustrate the benefits of using a spatially-explicit model for identifying potentially adaptive loci, we compared outlier locus detection methods with a recently-developed landscape genetic approach. We analyzed 157 loci from samples of the alpine herb Gentiana nivalis collected across the European Alps. Principle coordinates of neighbor matrices (PCNM), eigenvectors that quantify multi-scale spatial variation present in a data set, were incorporated into a landscape genetic approach relating AFLP frequencies with 23 environmental variables. Four major findings emerged. 1) Fifteen loci were significantly correlated with at least one predictor variable (R (adj) (2) > 0.5). 2) Models including PCNM variables identified eight more potentially adaptive loci than models run without spatial variables. 3) When compared to outlier detection methods, the landscape genetic approach detected four of the same loci plus 11 additional loci. 4) Temperature, precipitation, and solar radiation were the three major environmental factors driving potentially adaptive genetic variation in G. nivalis. Techniques presented in this paper offer an efficient method for identifying potentially adaptive genetic variation and associated environmental forces of selection, providing an important step forward for the conservation of non-model species under global change.
Resumo:
Extensive characterisation of Trypanosoma cruzi by isoenzyme phenotypes has separated the species into three principal zymodeme groups, Z1, Z2 and Z3, and into many individual zymodemes. There is marked diversity within Z2. A strong correlation has been demonstrated between the strain clusters determined by isoenzymes and those obtained using random amplified polymorphic DNA (RAPD) profiles. Polymorphisms in ribosomal RNA genes, in mini-exon genes, and microsatellite fingerprinting indicate the presence of at least two principal T. cruzi genetic lineages. Lineage 1 appears to correspond with Z2 and lineage 2 with Z1. Z1 (lineage 2) is associated with Didelphis. Z2 (lineage 1) may be associated with a primate host. Departures from Hardy-Weinberg equilibrium and linkage disequilibrium indicate that propagation of T. cruzi is predominantly clonal. Nevertheless, two studies show putative homozygotes and heterozygotes circulating sympatrically: the allozyme frequencies for phosphoglucomutase, and hybrid RAPD profiles suggest that genetic exchange may be a current phenomenon in some T. cruzi transmission cycles. We were able to isolate dual drug-resistant T. cruzi biological clones following copassage of putative parents carrying single episomal drug-resistant markers. A multiplex PCR confirmed that dual drug-resistant clones carried both episomal plasmids. Preliminary karyotype analysis suggests that recombination may not be confined to the extranuclear genome.
Resumo:
IPH responded to the Department of Justice, Equality and Defence review of the voluntary Code of Practice for the display and sale of alcohol in supermarkets, convenience stores and similar mixed trading outlets. The voluntary Code was introduced in 2008 as an alternative to the statutory rules for structural separation of alcohol products in mixed trading outlets which are set out in section 9 of the Intoxicating Liquor Act 2008. Interested bodies and individuals were invited to submit comments on the Compliance Report for 2011 and on the effectiveness of the voluntary approach to structural separation by 20th December 2011. The Minister said he intended to also seek the views of the Minister for Health and the Joint Oireachtas Committee on Justice, Defence and Equality before reaching any decision on whether to bring the statutory rules in the 2008 Act into operation.