943 resultados para Genetic and phenotypic correlation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Tef [Eragrostis tef (Zucc.) Trotter] is the major cereal crop of Ethiopia where it is annually cultivated on more than three million hectares of land by over six million small-scale farmers. It is broadly grouped into white and brown-seeded type depending on grain color, although some intermediate color grains also exist. Earlier breeding experiments focused on white-seeded tef, and a number of improved varieties were released to the farming community. Thirty-six brown-seeded tef genotypes were evaluated using a 6 × 6 simple lattice design at three locations in the central highlands of Ethiopia to assess the productivity, heritability, and association among major pheno-morphic traits. Results The mean square due to genotypes, locations, and genotype by locations were significant (P < 0.01) for all traits studied. Genotypic and phenotypic coefficients of variations ranged from 2.5 to 20.3 % and from 4.3 to 21.7 %, respectively. Grain yield showed significant (P < 0.01) genotypic correlation with shoot biomass and harvest index, while it had highly significant (P < 0.01) phenotypic correlation with all the traits evaluated. Besides, association of lodging index with biomass and grain yield was negative and significant at phenotypic level while it was not significant at genotypic level. Cluster analysis grouped the 36 test genotypes into seven distinct classes. Furthermore, the first three principal components with eigenvalues greater than unity extracted 78.3 % of the total variation. Conclusion The current study, generally, revealed the identification of genotypes with superior grain yield and other desirable traits for further evaluation and eventual release to the farming community.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neospora caninum is one of the most significant parasitic organisms causing bovine abortion worldwide. Despite the economic impact of this infection, relatively little is known about the genetic diversity of this parasite. In this study, using Nc5 and ITS1 nested PCR, N. caninum has been detected in 12 brain samples of aborted fetuses from 298 seropositive dairy cattle collected from four different regions in Tehran, Iran. These specimen (Nc-Iran) were genotyped in multilocus using 9 different microsatellite markers previously described (MS4, MS5, MS6A, MS6B, MS7, MS8, MS10, MS12 and MS21). Microsatellite amplification was completely feasible in 2 samples, semi-completely in 8 samples, and failed in 2 samples. Within the two completely performed allelic profiles of Nc-Iran strains, unique multilocus profiles were obtained for both and novel allelic patterns were found in the MS8 and MS10 microsatellite markers. The Jaccard's similarity index showed significant difference between these two strains and from other standard isolates derived from GenBank such as Nc-Liv, Nc-SweB1, Nc-GER1, KBA1, and KBA2. All samples originating from the same area showed identical allelic numbers and a correlation between the number of repeats and geographic districts was observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a consequence of artificial selection for specific traits, crop plants underwent considerable genotypic and phenotypic changes during the process of domestication. These changes may have led to reduced resistance in the cultivated plant due to shifts in resource allocation from defensive traits to increased growth rates and yield. Modern maize (Zea mays ssp. mays) was domesticated from its ancestor Balsas teosinte (Z. mays ssp. parviglumis) approximately 9000 years ago. Although maize displays a high genetic overlap with its direct ancestor and other annual teosintes, several studies show that maize and its ancestors differ in their resistance phenotypes with teosintes being less susceptible to herbivore damage. However, the underlying mechanisms are poorly understood. Here we addressed the question to what extent maize domestication has affected two crucial chemical and one physical defence traits and whether differences in their expression may explain the differences in herbivore resistance levels. The ontogenetic trajectories of 1,4-benzoxazin-3-ones, maysin and leaf toughness were monitored for different leaf types across several maize cultivars and teosinte accessions during early vegetative growth stages. We found significant quantitative and qualitative differences in 1,4-benzoxazin-3-one accumulation in an initial pairwise comparison, but we did not find consistent differences between wild and cultivated genotypes during a more thorough examination employing several cultivars/accessions. Yet, 1,4-benzoxazin-3-one levels tended to decline more rapidly with plant age in the modern maize cultivars. Foliar maysin levels and leaf toughness increased with plant age in a leaf-specific manner, but were also unaffected by domestication. Based on our findings we suggest that defence traits other than the ones that were investigated are responsible for the observed differences in herbivore resistance between teosinte and maize. Furthermore, our results indicate that single pairwise comparisons may lead to false conclusions regarding the effects of domestication on defensive and possibly other traits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gene flow is usually thought to reduce genetic divergence and impede local adaptation by homogenising gene pools between populations. However, evidence for local adaptation and phenotypic differentiation in highly mobile species, experiencing high levels of gene flow, is emerging. Assessing population genetic structure at different spatial scales is thus a crucial step towards understanding mechanisms underlying intraspecific differentiation and diversification. Here, we studied the population genetic structure of a highly mobile species – the great tit Parus major – at different spatial scales. We analysed 884 individuals from 30 sites across Europe including 10 close-by sites (< 50 km), using 22 microsatellite markers. Overall we found a low but significant genetic differentiation among sites (FST = 0.008). Genetic differentiation was higher, and genetic diversity lower, in south-western Europe. These regional differences were statistically best explained by winter temperature. Overall, our results suggest that great tits form a single patchy metapopulation across Europe, in which genetic differentiation is independent of geographical distance and gene flow may be regulated by environmental factors via movements related to winter severity. This might have important implications for the evolutionary trajectories of sub-populations, especially in the context of climate change, and calls for future investigations of local differences in costs and benefits of philopatry at large scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Correlations between symptom documentation in medical records and patient self-report (SR) vary depending on the condition studied. Patient symptoms are particularly important in urinary tract infection (UTI) diagnosis, and this correlation for UTI symptoms is currently unknown. METHODS This is a cross-sectional survey study in hospitalized patients with Escherichia coli bacteriuria. Patients were interviewed within 24 hours of diagnosis for the SR of UTI symptoms. We reviewed medical records for UTI symptoms documented by admitting or treating inpatient physicians (IPs), nurses (RNs), and emergency physicians (EPs). The level of agreement between groups was assessed using Cohen κ coefficient. RESULTS Out of 43 patients, 34 (79%) self-reported at least 1 of 6 primary symptoms. The most common self-reported symptoms were urinary frequency (53.5%); retention (41.9%); flank pain, suprapubic pain, and fatigue (37.2% each); and dysuria (30.2%). Correlation between SR and medical record documentation was slight to fair (κ, 0.06-0.4 between SR and IPs and 0.09-0.5 between SR and EDs). Positive agreement was highest for dysuria and frequency. CONCLUSION Correlation between self-reported UTI symptoms and health care providers' documentation was low to fair. Because medical records are a vital source of information for clinicians and researchers and symptom assessment and documentation are vital in distinguishing UTI from asymptomatic bacteriuria, efforts must be made to improve documentation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Identifying and characterizing the genes responsible for inherited human diseases will ultimately lead to a more holistic understanding of disease pathogenesis, catalyze new diagnostic and treatment modalities, and provide insights into basic biological processes. This dissertation presents research aimed at delineating the genetic and molecular basis of human diseases through epigenetic and functional studies and can be divided into two independent areas of research. The first area of research describes the development of two high-throughput melting curve based methods to assay DNA methylation, referred to as McMSP and McCOBRA. The goal of this project was to develop DNA methylation methods that can be used to rapidly determine the DNA methylation status at a specific locus in a large number of samples. McMSP and McCOBRA provide several advantages over existing methods, as they are simple, accurate, robust, and high-throughput making them applicable to large-scale DNA methylation studies. McMSP and McCOBRA were then used in an epigenetic study of the complex disease Ankylosing spondylitis (AS). Specifically, I tested the hypothesis that aberrant patterns of DNA methylation in five AS candidate genes contribute to disease susceptibility. While no statistically significant methylation differences were observed between cases and controls, this is the first study to investigate the hypothesis that epigenetic variation contributes to AS susceptibility and therefore provides the conceptual framework for future studies. ^ In the second area of research, I performed experiments to better delimit the function of aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1), which when mutated causes various forms of inherited blindness such as Leber congenital amaurosis. A yeast two-hybrid screen was performed to identify putative AIPL1-interacting proteins. After screening 2 × 106 bovine retinal cDNA library clones, 6 unique putative AIPL1-interacting proteins were identified. While these 6 AIPL1 protein-protein interactions must be confirmed, their identification is an important step in understanding the functional role of AIPL1 within the retina and will provide insight into the molecular mechanisms underlying inherited blindness. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motivation: Population allele frequencies are correlated when populations have a shared history or when they exchange genes. Unfortunately, most models for allele frequency and inference about population structure ignore this correlation. Recent analytical results show that among populations, correlations can be very high, which could affect estimates of population genetic structure. In this study, we propose a mixture beta model to characterize the allele frequency distribution among populations. This formulation incorporates the correlation among populations as well as extending the model to data with different clusters of populations. Results: Using simulated data, we show that in general, the mixture model provides a good approximation of the among-population allele frequency distribution and a good estimate of correlation among populations. Results from fitting the mixture model to a dataset of genotypes at 377 autosomal microsatellite loci from human populations indicate high correlation among populations, which may not be appropriate to neglect. Traditional measures of population structure tend to over-estimate the amount of genetic differentiation when correlation is neglected. Inference is performed in a Bayesian framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Divergence of anterior-posterior (AP) limb pattern and differences in vertebral column morphology are the two main examples of mammalian evolution. The Hox genes (homeobox containing gene) have been implicated in driving evolution of these structures. However, regarding Hox genes, how they contribute to the generation of mammalian morphological diversities, is still unclear. Implementing comparative gene expression and phenotypic rescue studies for different mammalian Hox genes could aid in unraveling this mystery. In the first part of this thesis, the expression pattern of Hoxd13 gene, a key Hox gene in the establishment of the limb AP pattern, was examined in developing limbs of bats and mice. Bat forelimbs exhibit a pronounced asymmetric AP pattern and offer a good model to study the molecular mechanisms that contribute to the variety of mammalian limbs. The data showed that the expression domain of bat Hoxd13 was shifted prior to the asymmetric limb plate expansion, whereas its domain in mice was much more symmetric. This finding reveals a correlation between the divergence of Hoxd13 expression and the AP patterning difference in limb development. The second part of this thesis details a phenotypic rescue approach by human HOXB1-9 transgenes in mice with Hoxb1-9 deletion, The mouse mutants displayed homeosis in cervical and anterior thoracic vertebrae. The human transgenes entirely rescued the mouse mutants, suggesting that these human HOX genes have similar functions to their mouse orthologues in anterior axial skeletal patterning. The anterior expressing human HOXB transgenes such as HOXB1-3 were expressed in the mouse embryonic trunk in a similar manner as their murine orthologues. However, the anterior boundary of human HOXB9 expression domain was more posterior than that of the mouse Hoxb9 by 2-3 somites. These data provide the molecular support for the hypothesis that Hox genes are responsible for maintaining similar anterior axial skeletal architectures cervical and anterior thoracic regions, but different architectures in lumbar and posterior thoracic regions between humans and mice. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clubfoot is a common, complex birth defect affecting 4,000 newborns in the United States and 135,000 world-wide each year. The clubfoot deformity is characterized by inward and rigid downward displacement of one or both feet, along with persistent calf muscle hypoplasia. Despite strong evidence for a genetic liability, there is a limited understanding of the genetic and environmental factors contributing to the etiology of clubfoot. The studies described in this dissertation were performed to identify variants and/or genes associated with clubfoot. Genome-wide linkage scan performed on ten multiplex clubfoot families identified seven new chromosomal regions that provide new areas to search for clubfoot genes. Troponin C (TNNC2) the strongest candidate gene, located in 20q12-q13.11, is involved in muscle contraction. Exon sequencing of TNNC2 did not identify any novel coding variants. Interrogation of fifteen muscle contraction genes found strong associations with SNPs located in potential regulatory regions of TPM1 (rs4075583 and rs3805965), TPM2 (rs2025126 and rs2145925) and TNNC2 (rs383112 and rs437122). In previous studies, a strong association was found with rs3801776 located in the basal promoter of HOXA9, a gene also involved in muscle development and patterning. Altogether, this data suggests that SNPs located in potential regulatory regions of genes involved in muscle development and function could alter transcription factor binding leading to changes in gene expression. Functional analysis of 3801776/HOXA9, rs2025126/TPM2 and rs2145925/TPM2 showed altered protein binding, which significantly influenced promoter activity. Although the ancestral allele (G) of rs4075583/TPM1 creates a DNA-protein complex, it did not affect TPM1 promoter activity. However and importantly, in the context of a haplotype, rs4075583/G significantly decreased TPM1 promoter activity. These results suggest dysregulation of multiple skeletal muscle genes, TPM1, TPM2, TNNC2 and HOXA9, working in concert may contribute to clubfoot. However, specific allelic combinations involving these four regulatory SNPs did not confer a significantly higher risk for clubfoot. Other combinations of these variants are being evaluated. Moreover, these variants may interact with yet to be discovered variants in other genes to confer a higher clubfoot risk. Collectively, we show novel evidence for the role of skeletal muscle genes in clubfoot indicating that there are multiple genetic factors contributing to this complex birth defect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To identify more mutations that can affect the early development of Myxococcus xanthus, the synthetic transposon TnT41 was designed and constructed. By virtue of its special features, it can greatly facilitate the processes of mutation screening/selection, mapping, cloning and DNA sequencing. In addition, it allows for the systematic discovery of genes in regulatory hierarchies using their target promoters. In this study, the minimal regulatory region of the early developmentally regulated gene 4521 was used as a reporter in the TnT41 mutagenesis. Both positive (P) mutations and negative (N) mutations were isolated based on their effects on 4521 expression.^ Four of these mutations, i.e. N1, N2, P52 and P54 were analyzed in detail. Mutations N1 and N2 are insertion mutations in a gene designated sasB. The sasB gene is also identified in this study by genetic and molecular analysis of five UV-generated 4521 suppressor mutations. The sasB gene encodes a protein without meaningful homology in the databases. The sasB gene negatively regulates 4521 expression possibly through the SasS-SasR two component system. A wild-type sasB gene is required for normal M. xanthus fruiting body formation and sporulation.^ Cloning and sequencing analysis of the P52 mutation led to the identification of an operon that encodes the M. xanthus high-affinity branched-chain amino acid transporter system. This liv operon consists of five genes designated livK, livH, livM, livC, and livF, respectively. The Liv proteins are highly similar to their counterparts from other bacteria in both amino acid sequences, functional motifs and predicted secondary structures. This system is required for development since liv null mutations cause abnormality in fruiting body formation and a 100-fold decrease in sporulation efficiency.^ Mutation P54 is a TnT41 insertion in the sscM gene of the ssc chemotaxis system, which has been independently identified by Dr. Shi's lab. The sscM gene encodes a MCP (methyl-accepting chemotaxis protein) homologue. The SscM protein is predicted to contain two transmembrane domains, a signaling domain and at least one putative methylation site. Null mutations of this gene abolish the aggregation of starving cells at a very early stage, though the sporulation levels of the mutant can reach 10% that of wild-type cells. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ecological theory of adaptive radiation predicts that the evolution of phenotypic diversity within species is generated by divergent natural selection arising from different environments and competition between species. Genetic connectivity among populations is likely also to have an important role in both the origin and maintenance of adaptive genetic diversity. Our goal was to evaluate the potential roles of genetic connectivity and natural selection in the maintenance of adaptive phenotypic differences among morphs of Arctic charr, Salvelinus alpinus, in Iceland. At a large spatial scale, we tested the predictive power of geographic structure and phenotypic variation for patterns of neutral genetic variation among populations throughout Iceland. At a smaller scale, we evaluated the genetic differentiation between two morphs in Lake Thingvallavatn relative to historically explicit, coalescent-based null models of the evolutionary history of these lineages. At the large spatial scale, populations are highly differentiated, but weakly structured, both geographically and with respect to patterns of phenotypic variation. At the intralacustrine scale, we observe modest genetic differentiation between two morphs, but this level of differentiation is nonetheless consistent with strong reproductive isolation throughout the Holocene. Rather than a result of the homogenizing effect of gene flow in a system at migration-drift equilibrium, the modest level of genetic differentiation could equally be a result of slow neutral divergence by drift in large populations. We conclude that contemporary and recent patterns of restricted gene flow have been highly conducive to the evolution and maintenance of adaptive genetic variation in Icelandic Arctic charr.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method for cell–cell and cell–liposome fusion at the single-cell level is described. Individual cells or liposomes were first selected and manipulated either by optical trapping or by adhesion to a micromanipulator-controlled ultramicroelectrode. Spatially selective fusion of the cell–cell or cell–liposome pair was achieved by the application of a highly focused electric field through a pair of 5-μm o.d. carbon-fiber ultramicroelectrodes. The ability to fuse together single cells opens new possibilities in the manipulation of the genetic and cellular makeup of individual cells in a controlled manner. In the study of cellular networks, for example, the alteration of the biochemical identity of a selected cell can have a profound effect on the behavior of the entire network. Fusion of a single liposome with a target cell allows the introduction of the liposomal content into the cell interior as well as the addition of lipids and membrane proteins onto the cell surface. This cell–liposome fusion represents an approach to the manipulation of the cytoplasmic contents and surface properties of single cells. As an example, we have introduced a membrane protein (γ-glutamyltransferase) reconstituted in liposomes into the cell plasma membrane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have spectroscopically determined breath ammonia levels in seven patients with end-stage renal disease while they were undergoing hemodialysis at the University of California, Los Angeles, dialysis center. We correlated these measurements against simultaneously taken blood samples that were analyzed for blood urea nitrogen (BUN) and creatinine, which are the accepted standards indicating the level of nitrogenous waste loading in a patient's bloodstream. Initial levels of breath ammonia, i.e., at the beginning of dialysis, are between 1,500 ppb and 2,000 ppb (parts per billion). These levels drop very sharply in the first 15–30 min as the dialysis proceeds. We found the reduction in breath ammonia concentration to be relatively slow from this point on to the end of dialysis treatment, at which point the levels tapered off at 150 to 200 ppb. For each breath ammonia measurement, taken at 15–30 min intervals during the dialysis, we also sampled the patient's blood for BUN and creatinine. The breath ammonia data were available in real time, whereas the BUN and creatinine data were available generally 24 h later from the laboratory. We found a good correlation between breath ammonia concentration and BUN and creatinine. For one of the patients, the correlation gave an R2 of 0.95 for breath ammonia and BUN correlation and an R2 of 0.83 for breath ammonia and creatinine correlation. These preliminary data indicate the possibility of using the real-time breath ammonia measurements for determining efficacy and endpoint of hemodialysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relative contribution of genetic and socio-cultural factors in the shaping of behavior is of fundamental importance to biologists and social scientists, yet it has proven to be extremely difficult to study in a controlled, experimental fashion. Here I describe experiments that examined the strength of genetic and cultural (imitative) factors in determining female mate choice in the guppy, Poecilia reticulata. Female guppies from the Paria River in Trinidad have a genetic, heritable preference for the amount of orange body color possessed by males. Female guppies will, however, also copy (imitate) the mate choice of other females in that when two males are matched for orange color, an "observer" female will copy the mate choice of another ("model") female. Three treatments were undertaken in which males differed by an average of 12%, 24%, or 40% of the total orange body color. In all cases, observer females viewed a model female prefer the less colorful male. When males differed by 12% or 24%, observer females preferred the less colorful male and thus copied the mate choice of others, despite a strong heritable preference for orange body color in males. When males differed by 40% orange body color, however, observer females preferred the more colorful male and did not copy the mate choice of the other female. In this system, then, imitation can "override" genetic preferences when the difference between orange body color in males is small or moderate, but genetic factors block out imitation effects when the difference in orange body color in males is large. This experiment provides the first attempt to experimentally examine the relative strength of cultural and genetic preferences for a particular trait and suggests that these two factors moderate one another in shaping social behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We explored how two independent variables, one genetic (i.e., specific rat strains) and another environmental (i.e., a developmental excitotoxic hippocampal lesion), contribute to phenotypic variation. Sprague-Dawley (SD), Fischer 344 (F344), and Lewis rats underwent two grades of neonatal excitotoxic damage: small and large ventral hippocampal (SVH and LVH) lesions. Locomotion was tested before puberty [postnatal day 35 (P35)] and after puberty (P56) following exposure to a novel environment or administration of amphetamine. The behavioral effects were strain- and lesion-specific. As shown previously, SD rats with LVH lesions displayed enhanced spontaneous and amphetamine-induced locomotion as compared with controls at P56, but not at P35. SVH lesions in SD rats had no effect at any age. In F344 rats with LVH lesions, enhanced spontaneous and amphetamine-induced locomotion appeared early (P35) and was exaggerated at P56. SVH lesions in F344 rats resulted in a pattern of effects analogous to LVH lesions in SD rats--i.e., postpubertal onset of hyperlocomotion (P56). In Lewis rats, LVH lesions had no significant effect on novelty- or amphetamine-induced locomotion at any age. These data show that the degree of genetic predisposition and the extent of early induced hippocampal defect contribute to the particular pattern of behavioral outcome. These results may have implications for modeling interactions of genetic and environmental factors involved in schizophrenia, a disorder characterized by phenotypic heterogeneity, genetic predisposition, a developmental hippocampal abnormality, and vulnerability to environmental stress.