890 resultados para Galapagos-islands
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
The best description of water resources for Grand Turk was offered by Pérez Monteagudo (2000) who suggested that rain water was insufficient to ensure a regular water supply although water catchment was being practised and water catchment possibilities had been analysed. Limestone islands, mostly flat and low lying, have few possibilities for large scale surface storage, and groundwater lenses exist in very delicate equilibrium with saline seawater, and are highly likely to collapse due to sea level rise, improper extraction, drought, tidal waves or other extreme event. A study on the impact of climate change on water resources in the Turks and Caicos Islands is a challenging task, due to the fact that the territory of the Islands covers different environmental resources and conditions, and accurate data are lacking. The present report is based on collected data wherever possible, including grey data from several sources such as the Intergovernmental Panel on Climate Change (IPCC) and Cuban meteorological service data sets. Other data were also used, including the author’s own estimates and modelling results. Although challenging, this was perhaps the best approach towards analysing the situation. Furthermore, IPCC A2 and B2 scenarios were used in the present study in an effort to reduce uncertainty. The main conclusion from the scenario approach is that the trend observed in precipitation during the period 1961 - 1990 is decreasing. Similar behaviour was observed in the Caribbean region. This trend is associated with meteorological causes, particularly with the influence of the North Atlantic Anticyclone. The annual decrease in precipitation is estimated to be between 30-40% with uncertain impacts on marine resources. After an assessment of fresh water resources in Turks and Caicos Islands, the next step was to estimate residential water demand based on a high fertility rate scenario for the Islands (one selected from four scenarios and compared to countries having similar characteristics). The selected scenario presents higher projections on consumption growth, enabling better preparation for growing water demand. Water demand by tourists (stopover and excursionists, mainly cruise passengers) was also obtained, based on international daily consumption estimates. Tourism demand forecasts for Turks and Caicos Islands encompass the forty years between 2011 and 2050 and were obtained by means of an Artificial Neural Networks approach. for the A2 and B2 scenarios, resulting in the relation BAU>B2>A2 in terms of tourist arrivals and water demand levels from tourism. Adaptation options and policies were analysed. Resolving the issue of the best technology to be used for Turks and Caicos Islands is not directly related to climate change. Total estimated water storage capacity is about 1, 270, 800 m3/ year with 80% capacity load for three plants. However, almost 11 desalination plants have been detected on Turks and Caicos Islands. Without more data, it is not possible to estimate long term investment to match possible water demand and more complex adaptation options. One climate change adaptation option would be the construction of elevated (30 metres or higher) storm resistant water reservoirs. The unit cost of the storage capacity is the sum of capital costs and operational and maintenance costs. Electricity costs to pump water are optional as water should, and could, be stored for several months. The costs arising for water storage are in the range of US$ 0.22 cents/m3 without electricity costs. Pérez Monteagudo (2000) estimated water prices at around US$ 2.64/m3 in stand points, US$ 7.92 /m3 for government offices, and US$ 13.2 /m3for cistern truck vehicles. These data need to be updated. As Turks and Caicos Islands continues to depend on tourism and Reverse Osmosis (RO) for obtaining fresh water, an unavoidable condition to maintaining and increasing gross domestic product(GDP) and population welfare, dependence on fossil fuels and vulnerability to increasingly volatile prices will constitute an important restriction. In this sense, mitigation supposes a synergy with adaptation. Energy demand and emissions of carbon dioxide (CO2) were also estimated using an emissions factor of 2. 6 tCO2/ tonne of oil equivalent (toe). Assuming a population of 33,000 inhabitants, primary energy demand was estimated for Turks and Caicos Islands at 110,000 toe with electricity demand of around 110 GWh. The business as usual (BAU), as well as the mitigation scenarios were estimated. The BAU scenario suggests that energy use should be supported by imported fossil fuels with important improvements in energy efficiency. The mitigation scenario explores the use of photovoltaic and concentrating solar power, and wind energy. As this is a preliminary study, the local potential and locations need to be identified to provide more relevant estimates. Macroeconomic assumptions are the same for both scenarios. By 2050, Turks and Caicos Islands could demand 60 m toe less than for the BAU scenario.
Resumo:
Owing to their high vulnerability and low adaptive capacity, Caribbean islands have legitimate concerns about their future, based on observational records, experience with current patterns and consequences of climate variability, and climate model projections. Although emitting less than 1% of global greenhouse gases, islands from the region have already perceived a need to reallocate scarce resources away from economic development and poverty reduction, and towards the implementation of strategies to adapt to the growing threats posed by global warming (Nurse and Moore, 2005). The objectives of this Report are to conduct economic analyses of the projected impacts of climate change to 2050, within the context of the IPCC A2 and B2 scenarios, on the coastal and marine resources of the British Virgin Islands (BVI). The Report presents a valuation of coastal and marine services; quantitative and qualitative estimates of climate change impacts on the coastal zone; and recommendations of possible adaptation strategies and costs and benefits of adaptation. A multi-pronged approach is employed in valuing the marine and coastal sector. Direct use and indirect use values are estimated. The amount of economic activity an ecosystem service generates in the local economy underpins estimation of direct use values. Tourism and fisheries are valued using the framework developed by the World Resources Institute. Biodiversity is valued in terms of the ecological functions it provides, such as climate regulation, shoreline protection, water supply erosion control and sediment retention, and biological control, among others. Estimates of future losses to the coastal zone from climate change are determined by considering: (1) the effect of sea level rise on coastal lands; and (2) the effect of a rise in sea surface temperature (SST) on coastal waters. Discount rates of 1%, 2% and 4% are employed to analyse all loss estimates in present value terms. The overall value for the coastal and marine sector is USD $1,606 million (mn). This is almost 2% larger than BVI’s 2008 GDP. Tourism and recreation comprise almost two-thirds of the value of the sector. By 2100, the effects of climate change on coastal lands are projected to be $3,988.6 mn, and $2,832.9 mn under the A2 and B2 scenarios respectively. In present value terms, if A2 occurs, losses range from $108.1-$1,596.8 mn and if B2 occurs, losses range from $74.1-$1,094.1 mn, depending on the discount rate used. Estimated costs of a rise in SST in 2050 indicate that they vary between $1,178.0 and $1,884.8 mn. Assuming a discount rate of 4%, losses range from $226.6 mn for the B2 scenario to $363.0 mn for the A2 scenario. If a discount rate of 1% is assumed, estimated losses are much greater, ranging from $775.6-$1,241.0 mn. Factoring in projected climate change impacts, the net value of the coastal and marine sector suggests that the costs of climate change significantly reduce the value of the sector, particularly under the A2 and B2 climate change scenarios for discount rates of 1% and 2%. In contrast, the sector has a large, positive, though declining trajectory, for all years when a 4% discount rate is employed. Since the BVI emits minimal greenhouse gases, but will be greatly affected by climate change, the report focuses on adaptation as opposed to mitigation strategies. The options shortlisted are: (1) enhancing monitoring of all coastal waters to provide early warning alerts of bleaching and other marine events; (2) introducing artificial reefs or fish-aggregating devices; (3) introducing alternative tourist attractions; (4) providing retraining for displaced tourism workers; and (5) revising policies related to financing national tourism offices to accommodate the new climatic realities. All adaptation options considered are quite justifiable in national terms; each had benefit-cost ratios greater than 1.
Resumo:
This study aimed to describe the population structure of the Amazon shrimp Macrobrachium amazonicum, as well as their relative growth between the length of the cephalothorax and the total length, and between the length of the cephalothorax and the total mass of shrimps of a fluvial-estuarine plain in the State of Pará. Shrimps were sampled monthly from August 2006 to July 2007, using trawl nets, taking three replicates at each site (Arapiranga and Mosqueiro) per month, totaling 72 replicates. We caught 5,510 specimens, being 90.90% from Arapiranga Island and 9.1% from Mosqueiro Island. The highest densities occurred in July (1.33 individuals/m2), at the beginning of the dry season and in December (1.66 individuals/m2), at the beginning of the rainy season. The morphometric analysis for separate and grouped sexes resulted in negative and positive allometric growth. Ovigerous females were observed in all months, indicating continuous reproduction and the majority (67.81%) was caught during the less rainy season. The abundance and continuous reproduction of M. amazonicum show that this estuary offers conditions for the proper development of this population.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The use of gastropod shells by hermit crabs is determined by the availability of shells in the environment or through selection for size and volume. This study analyzed patterns in the use of shells by Dardanus insignis (Saussure, 1858). From January 1998 to December 1999, 386 individuals were collected from two islands at Ubatuba, Sao Paulo. The crabs were measured for cephalothoracic shield length (CSL) and wet weight (CWW). The gastropod shells occupied by hermit crabs were identified, and the shell aperture width (SAW), dry weight (SDW) and internal volume (STY) were measured. The relationships between the dimensions of the gastropod shell and the hermit crabs were evaluated by linear regression analysis. Among the 11 species of gastropod shells used by D. insignis, the most often used was Olivancillaria urceus (31%), followed by Strombus pugilis (22%) and Siratus tenuivaricosus (18%). The shell of O. urceus was used most probably due to its high availability on Couves and Mar Virado islands. The most significant biometric parameter was shell aperture width (F=18.231; p<0.0001), highlighting the importance of this variable for the shell choice by D. insignis at both sites.
Resumo:
Fifty-one slimy sea plumes (Pseudopterogorgia americana Gmelin, 1791) were sampled for caridean shrimps at Guana Island, British Virgin Islands, during one week in July 1992. Sam- pling depth ranged from 3-22 m. Nine species were collected: Hippolyte nicholsoni Chace, 1972; Latreutes sp.; Neopontonides chacei Heard, 1986; Perclimenes cf. patae Heard and Spotte, 1991; Periclimenes cf. pauper Holthuis, 1951; Periclimenes sp.; Pseudocoutierea antillensis Chace, 1972; Tozeuma cf. cornutum Milne Edwards, 1881; and Trachycaris rugosa (Bate, 1888). A total of 1,418 specimens (including fragments) was obtained. The number of shrimp species per gorgonian ranged from 1-5; one gorgonian harbored 156 shrimps. The two predominant species, N. chacei and H. nicholsoni, occupy different mean depths (12.6 and 8.2 m, respectively). Sexual dimorphism assessed with Mann-Whitney U-tests was not apparent in the specimens of N. chacei (P > 0.05), but females of H. nicholsoni were significantly larger than males (P < 0.001). Minimum carapace length (CL, the tip of the rostrum to the posterior dorsal margin of the carapace) at which male N. chacei acquire a single appendix masculina spine is 1.25 mm; male H. nicholsoni can acquire a single spine at 0.9 mm CL. Histological sections of male N. chacei showed that shrimp with 0 or 1 spine are least likely to be mature. Female N. chacei can become ovigerous at 1.9 mm CL and female H. nicholsoni at 1.2 mm CL. The taxonomic status of 5 of the 9 species collected is uncertain.