987 resultados para GLASS BEAD TECHNOLOGY
Resumo:
Non-thermal plasma (NTP) is a promising candidate for controlling engine exhaust emissions. Plasma is known as the fourth state of matter, where both electrons and positive ions co-exist. Both gaseous and particle emissions of diesel exhaust undergo chemical changes when they are exposed to plasma. In this project diesel particulate matter (DPM) mitigation from the actual diesel exhaust by using NTP technology has been studied. The effect of plasma, not only on PM mass but also on PM size distribution, physico-chemical structure of PM and PM removal mechanisms, has been investigated. It was found that NTP technology can significantly reduce both PM mass and number. However, under some circumstances particles can be formed by nucleation. Energy required to create the plasma with the current technology is higher than the benchmark set by the commonly used by the automotive industry. Further research will enable the mechanism of particle creation and energy consumption to be optimised.
Resumo:
An increasing range of technology services are now offered on a self-service basis. However, problems with self-service technologies (SSTs) occur at times due to the technical error, staff error, or consumers’ own mistakes. Considering the role of consumers as co-producers in the SST context, we aim to study consumer’s behaviours, strategies, and decision making in solving their problem with SST and identify the factors contributing to their persistence in solving the problem. This study contributes to the information systems research, as it is the first study that aims to identify such a process and the factors affecting consumers’ persistence in solving their problem with SST. A focus group with user support staff has been conducted, yielding some initial results that helped to conduct the next phases of the study. Next, using Critical Incident Technique, data will be gathered through focus groups with users, diary method, and think-aloud method.
Resumo:
"Historically, science had a place in education before the time of Plato and Aristotle (e.g., Stonehenge). Technology gradually increased since early human inventions (e.g., indigenous tools and weapons), rose up dramatically through the industrial revolution and escalated exponentially during the twentieth and twenty-first centuries, particularly with the advent of the Internet. Engineering accomplishments were evident in the constructs of early civil works, including roads and structural feats such as the Egyptian pyramids. Mathematics was not as clearly defined BC (Seeds 2010), but was utilized for more than two millennia (e.g., Archimedes, Kepler, and Newton) and paved its way into education as an essential scientific tool and a way of discovering new possibilities. Hence, combining science, technology, engineering, and mathematics (STEM) areas should not come as a surprise but rather as a unique way of packaging what has been ..."--Publisher Website
Resumo:
The competent leadership and governance of digital transformation needs to involve the board of directors. The reported lack of such capability in boards is becoming a pressing issue. Underpinning leadership in such transformation are the competencies to effectively govern Enterprise Technology (ETG). In this paper we take the position that ETG competencies are essential in boards because competent enterprise business technology governance has been shown to contribute to increased revenue, profit, and returns. We report the industry validation processes of a set of three board-of-director competencies needed for effective ETG related to strategy and planning; investment and risk; and, innovation and value creation. We conclude that gaps in board ETG competence remain.
Resumo:
This paper presents simulation results for future electricity grids using an agent-based model developed with MODAM (MODular Agent-based Model). MODAM is introduced and its use demonstrated through four simulations based on a scenario that expects a rise of on-site renewable generators and electric vehicles (EV) usage. The simulations were run over many years, for two areas in Townsville, Australia, capturing variability in space of the technology uptake, and for two charging methods for EV, capturing people's behaviours and their impact on the time of the peak load. Impact analyses of these technologies were performed over the areas, down to the distribution transformer level, where greater variability of their contribution to the assets peak load was observed. The MODAM models can be used for different purposes such as impact of renewables on grid sizing, or on greenhouse gas emissions. The insights gained from using MODAM for technology assessment are discussed.
Resumo:
Asking why is an important foundation of inquiry and fundamental to the development of reasoning skills and learning. Despite this, and despite the relentless and often disruptive nature of innovations in information and communications technology (ICT), sophisticated tools that directly support this basic act of learning appear to be undeveloped, not yet recognized, or in the very early stages of development. Why is this so? To this question, there is no single factual answer. In response, however, plausible explanations and further questions arise, and such responses are shown to be typical consequences of why-questioning. A range of contemporary scenarios are presented to highlight the problem. Consideration of the various inputs into the evolution of digital learning is introduced to provide historical context and this serves to situate further discussion regarding innovation that supports inquiry-based learning. This theme is further contextualized by narratives on openness in education, in which openness is also shown to be an evolving construct. Explanatory and descriptive contents are differentiated in order to scope out the kinds of digital tools that might support inquiry instigated by why-questioning and which move beyond the search paradigm. Probing why from a linguistic perspective reveals versatile and ambiguous semantics. The why dimension—asking, learning, knowing, understanding, and explaining why—is introduced as a construct that highlights challenges and opportunities for ICT innovation. By linking reflective practice and dialogue with cognitive engagement, this chapter points to specific frontiers for the design and development of digital learning tools, frontiers in which inquiry may find new openings for support.
Resumo:
This evaluation was commissioned by Martin Hanlon, Director of the Planning and Quality Unit of the University of Technology, Sydney (UTS) to investigate the Student Feedback Survey (SFS) system, engagement in stakeholder feedback and provide recommendations against the Terms of Reference.
Resumo:
A three-year research program funded by the Australian Research Council and conducted by the four Learned Academies through the Australian Council of Learned Academies for PMSEIC, through the Office of the Chief Scientist. Securing Australia’s Future delivers research-based evidence and findings to support policy development in areas of importance to Australia’s future.
Resumo:
Objective The main aim of this study was to identify young drivers' underlying beliefs (i.e., behavioral, normative, and control) regarding initiating, monitoring/reading, and responding to social interactive technology (i.e., functions on a Smartphone that allow the user to communicate with other people). Method This qualitative study was a beliefs elicitation study in accordance with the Theory of Planned Behavior and sought to elicit young drivers' behavioral (i.e., advantages, disadvantages), normative (i.e., who approves, who disapproves), and control beliefs (i.e., barriers, facilitators) which underpin social interactive technology use while driving. Young drivers (N = 26) aged 17 to 25 years took part in an interview or focus group discussion. Results While differences emerged between the three behaviors of initiating, monitoring/reading, and responding for each of the behavioral, normative, and control belief categories, the strongest distinction was within the behavioral beliefs category (e.g., communicating with the person that they were on the way to meet was an advantage of initiating; being able to determine whether to respond was an advantage of monitoring/reading; and communicating with important people was an advantage of responding). Normative beliefs were similar for initiating and responding behaviors (e.g., friends and peers more likely to approve than other groups) and differences emerged for monitoring/reading (e.g., parents were more likely to approve of this behavior than initiating and responding). For control beliefs, there were differences between the beliefs regarding facilitators of these behaviors (e.g., familiar roads and conditions facilitated initiating; having audible notifications of an incoming communication facilitated monitoring/reading; and receiving a communication of immediate importance facilitated responding); however, the control beliefs that presented barriers were consistent across the three behaviors (e.g., difficult traffic/road conditions). Conclusion The current study provides an important addition to the extant literature and supports emerging research which suggests initiating, monitoring/reading, and responding may indeed be distinct behaviors with different underlying motivations.
Resumo:
This study proposes that technology adoption be considered as a multi-stage process constituting several distinct stages. Using the Theory of Planned Behaviour (TPB), Ettlie’s adoption stages and by employing data gathered from 162 owners of Small and Medium-sized Enterprises (SMEs), our findings show that the determinants of the intention to adopt packaged software fluctuate significantly across adoption stages.