985 resultados para GENETIC-RESOURCES
Resumo:
A multilevel negotiation mechanism for operating smart grids and negotiating in electricity markets considers the advantages of virtual power player management.
Resumo:
Power Systems (PS), have been affected by substantial penetration of Distributed Generation (DG) and the operation in competitive environments. The future PS will have to deal with large-scale integration of DG and other distributed energy resources (DER), such as storage means, and provide to market agents the means to ensure a flexible and secure operation. Virtual power players (VPP) can aggregate a diversity of players, namely generators and consumers, and a diversity of energy resources, including electricity generation based on several technologies, storage and demand response. This paper proposes an artificial neural network (ANN) based methodology to support VPP resource schedule. The trained network is able to achieve good schedule results requiring modest computational means. A real data test case is presented.
Resumo:
This paper presents a Unit Commitment model with reactive power compensation that has been solved by Genetic Algorithm (GA) optimization techniques. The GA has been developed a computational tools programmed/coded in MATLAB. The main objective is to find the best generations scheduling whose active power losses are minimal and the reactive power to be compensated, subjected to the power system technical constraints. Those are: full AC power flow equations, active and reactive power generation constraints. All constraints that have been represented in the objective function are weighted with a penalty factors. The IEEE 14-bus system has been used as test case to demonstrate the effectiveness of the proposed algorithm. Results and conclusions are dully drawn.
Resumo:
The smart grid concept is rapidly evolving in the direction of practical implementations able to bring smart grid advantages into practice. Evolution in legacy equipment and infrastructures is not sufficient to accomplish the smart grid goals as it does not consider the needs of the players operating in a complex environment which is dynamic and competitive in nature. Artificial intelligence based applications can provide solutions to these problems, supporting decentralized intelligence and decision-making. A case study illustrates the importance of Virtual Power Players (VPP) and multi-player negotiation in the context of smart grids. This case study is based on real data and aims at optimizing energy resource management, considering generation, storage and demand response.
Resumo:
Energy Resources Management can play a very relevant role in future power systems in SmartGrid context, with high penetration of distributed generation and storage systems. This paper deals with the importance of resources management in incident situation. The system to consider a high penetration of distributed generation, demand response, storage units and network reconfiguration. A case study evidences the advantages of using a flexible SCADA to control the energy resources in incident situation.
Resumo:
In the energy management of a small power system, the scheduling of the generation units is a crucial problem for which adequate methodologies can maximize the performance of the energy supply. This paper proposes an innovative methodology for distributed energy resources management. The optimal operation of distributed generation, demand response and storage resources is formulated as a mixed-integer linear programming model (MILP) and solved by a deterministic optimization technique CPLEX-based implemented in General Algebraic Modeling Systems (GAMS). The paper deals with a vision for the grids of the future, focusing on conceptual and operational aspects of electrical grids characterized by an intensive penetration of DG, in the scope of competitive environments and using artificial intelligence methodologies to attain the envisaged goals. These concepts are implemented in a computational framework which includes both grid and market simulation.
Resumo:
This paper proposes two meta-heuristics (Genetic Algorithm and Evolutionary Particle Swarm Optimization) for solving a 15 bid-based case of Ancillary Services Dispatch in an Electricity Market. A Linear Programming approach is also included for comparison purposes. A test case based on the dispatch of Regulation Down, Regulation Up, Spinning Reserve and Non-Spinning Reserve services is used to demonstrate that the use of meta-heuristics is suitable for solving this kind of optimization problem. Faster execution times and lower computational resources requirements are the most relevant advantages of the used meta-heuristics when compared with the Linear Programming approach.
Resumo:
Electricity market players operating in a liberalized environment requires access to an adequate decision support tool, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services represent a good negotiation opportunity that must be considered by market players. For this, decision support tools must include ancillary market simulation. This paper proposes two different methods (Linear Programming and Genetic Algorithm approaches) for ancillary services dispatch. The methodologies are implemented in MASCEM, a multi-agent based electricity market simulator. A test case concerning the dispatch of Regulation Down, Regulation Up, Spinning Reserve and Non-Spinning Reserve services is included in this paper.
Resumo:
Individual cancer susceptibility seems to be related to factors such as changes in oncogenes and tumor suppressor genes expression, and differences in the action of metabolic enzymes and DNA repair regulated by specific genes. Epidemiological studies on genetic polymorphisms of human xenobiotics metabolizing enzymes and cancer have revealed low relative risks. Research considering genetic polymorphisms prevalence jointly with environmental exposures could be relevant for a better understanding of cancer etiology and the mechanisms of carcinogenesis and also for new insights on cancer prognosis. This study reviews the approaches of molecular epidemiology in cancer research, stressing case-control and cohort designs involving genetic polymorphisms, and factors that could introduce bias and confounding in these studies. Similarly to classical epidemiological research, genetic polymorphisms requires considering aspects of precision and accuracy in the study design.
Resumo:
The International Agency for Research on Cancer classified formaldehyde as carcinogenic to humans because there is “sufficient epidemiological evidence that it causes nasopharyngeal cancer in humans”. Genes involved in DNA repair and maintenance of genome integrity are critically involved in protecting against mutations that lead to cancer and/or inherited genetic disease. Association studies have recently provided evidence for a link between DNA repair polymorphisms and micronucleus (MN) induction. We used the cytokinesis-block micronucleus (CBMN assay) in peripheral lymphocytes and MN test in buccal cells to investigate the effects of XRCC3 Thr241Met, ADH5 Val309Ile, and Asp353Glu polymorphisms on the frequency of genotoxicity biomarkers in individuals occupationally exposed to formaldehyde (n = 54) and unexposed workers (n = 82). XRCC3 participates in DNA double-strand break/recombination repair, while ADH5 is an important component of cellular metabolism for the elimination of formaldehyde. Exposed workers had significantly higher frequencies (P < 0.01) than controls for all genotoxicity biomarkers evaluated in this study. Moreover, there were significant associations between XRCC3 genotypes and nuclear buds, namely XRCC3 Met/Met (OR = 3.975, CI 1.053–14.998, P = 0.042) and XRCC3 Thr/Met (OR = 5.632, CI 1.673–18.961, P = 0.005) in comparison with XRCC3 Thr/Thr. ADH5 polymorphisms did not show significant effects. This study highlights the importance of integrating genotoxicity biomarkers and genetic polymorphisms in human biomonitoring studies.
Resumo:
The objective of this descriptive study was to map mental health research in Brazil, providing an overview of infrastructure, financing and policies mental health research. As part of the Atlas-Research Project, a WHO initiative to map mental health research in selected low and middle-income countries, this study was carried out between 1998 and 2002. Data collection strategies included evaluation of governmental documents and sites and questionnaires sent to key professionals for providing information about the Brazilian mental health research infrastructure. In the year 2002, the total budget for Health Research was US$101 million, of which US$3.4 million (3.4) was available for Mental Health Research. The main funding sources for mental health research were found to be the São Paulo State Funding Agency (Fapesp, 53.2%) and the Ministry of Education (CAPES, 30.2%). The rate of doctors is 1.7 per 1,000 inhabitants, and the rate of psychiatrists is 2.7 per 100,000 inhabitants estimated 2000 census. In 2002, there were 53 postgraduate courses directed to mental health training in Brazil (43 in psychology, six in psychiatry, three in psychobiology and one in psychiatric nursing), with 1,775 students being trained in Brazil and 67 overseas. There were nine programs including psychiatry, neuropsychiatry, psychobiology and mental health, seven of them implemented in Southern states. During the five-year period, 186 students got a doctoral degree (37 per year) and 637 articles were published in Institute for Scientic Information (ISI)-indexed journals. The investment channeled towards postgraduate and human resource education programs, by means of grants and other forms of research support, has secured the country a modest but continuous insertion in the international knowledge production in the mental health area.
Resumo:
OBJECTIVE: To estimate the direct costs of schizophrenia for the public sector. METHODS: A study was carried out in the state of São Paulo, Brazil, during 1998. Data from the medical literature and governmental research bodies were gathered for estimating the total number of schizophrenia patients covered by the Brazilian Unified Health System. A decision tree was built based on an estimated distribution of patients under different types of psychiatric care. Medical charts from public hospitals and outpatient services were used to estimate the resources used over a one-year period. Direct costs were calculated by attributing monetary values for each resource used. RESULTS: Of all patients, 81.5% were covered by the public sector and distributed as follows: 6.0% in psychiatric hospital admissions, 23.0% in outpatient care, and 71.0% without regular treatment. The total direct cost of schizophrenia was US$191,781,327 (2.2% of the total health care expenditure in the state). Of this total, 11.0% was spent on outpatient care and 79.2% went for inpatient care. CONCLUSIONS: Most schizophrenia patients in the state of São Paulo receive no regular treatment. The study findings point out to the importance of investing in research aimed at improving the resource allocation for the treatment of mental disorders in Brazil.
Resumo:
Cloud computing is increasingly being adopted in different scenarios, like social networking, business applications, scientific experiments, etc. Relying in virtualization technology, the construction of these computing environments targets improvements in the infrastructure, such as power-efficiency and fulfillment of users’ SLA specifications. The methodology usually applied is packing all the virtual machines on the proper physical servers. However, failure occurrences in these networked computing systems can induce substantial negative impact on system performance, deviating the system from ours initial objectives. In this work, we propose adapted algorithms to dynamically map virtual machines to physical hosts, in order to improve cloud infrastructure power-efficiency, with low impact on users’ required performance. Our decision making algorithms leverage proactive fault-tolerance techniques to deal with systems failures, allied with virtual machine technology to share nodes resources in an accurately and controlled manner. The results indicate that our algorithms perform better targeting power-efficiency and SLA fulfillment, in face of cloud infrastructure failures.
Resumo:
Dissertação de Mestrado, Estudos Integrados dos Oceanos, 13 de Fevereiro de 2014, Universidade dos Açores.
Resumo:
A great number of low-temperature geothermal fields occur in Northern-Portugal related to fractured rocks. The most important superficial manifestations of these hydrothermal systems appear in pull-apart tectonic basins and are strongly conditioned by the orientation of the main fault systems in the region. This work presents the interpretation of gravity gradient maps and 3D inversion model produced from a regional gravity survey. The horizontal gradients reveal a complex fault system. The obtained 3D model of density contrast puts into evidence the main fault zone in the region and the depth distribution of the granitic bodies. Their relationship with the hydrothermal systems supports the conceptual models elaborated from hydrochemical and isotopic water analyses. This work emphasizes the importance of the role of the gravity method and analysis to better understand the connection between hydrothermal systems and the fractured rock pattern and surrounding geology. (c) 2013 Elsevier B.V. All rights reserved.