946 resultados para GAS-LIQUID FLOW
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The performance and emissions behavior of a Rover 1S/60 turboshaft engine when operated with several blends of aviation kerosene and ox tallow ethyl-ester are shown in this article. The tests were performed with a compressor shaft coupled to an hydraulic dynamometer where data of power and mass fuel flow were collected to determine the brake specific fuel consumption. A flue gas analyzer was positioned at the exhaust duct to collect oxygen, carbon dioxide, carbon monoxide and nitrous oxides. An increase in the specific fuel consumption was observed due to the lesser lower heating value of the most oxygenated blends. However, reductions of CO, CO2 and NO (x) have been observed and no-significant ill effects have occurred in the turbine operation.
Resumo:
This work presents a numerical model to simulate refrigerant flow through capillary tubes, commonly used as expansion devices in refrigeration systems. The flow is divided in a single-phase region, where the refrigerant is in the subcooled liquid state, and a region of two-phase flow. The capillary tube is considered straight and horizontal. The flow is taken as one-dimensional and adiabatic. Steady-state condition is also assumed and the metastable flow phenomena are neglected. The two-fluid model, considering the hydrodynamic and thermal non-equilibrium between the liquid and vapor phases, is applied to the two-phase flow region. Comparisons are made with experimental measurements of the mass flow rate and pressure distribution along two capillary tubes working with refrigerant R-134a in different operating conditions. The results indicate that the present model provides a better estimation than the commonly employed homogeneous model. Some computational results referring to the quality, void fraction, velocities, and temperatures of each phase are presented and discussed.
Resumo:
A simple and sensitive method using solid phase microextraction (SPME) and liquid chromatography (LC) with heated online desorption (SPME-LC) was developed and validated to analyze anticonvulsants (AEDs) in human plasma samples. A heated lab-made interface chamber was used in the desorption procedure, which allowed the transference of the whole extracted sample. The SPME conditions were optimized by applying an experimental design. Important factors are discussed such as fiber coating types, pH, extraction time and desorption conditions. The drugs were analyzed by LC, using a C18 column (150 mm 4.6 mm 5 mm); and 50 mmol L1 , pH ¼ 5.50 ammonium acetate buffer : acetonitrile : methanol (55 : 22 : 23 v/v) as the mobile phase with a flow rate of 0.8 mL min1 . The suggested method presented precision (intra-assay and inter-assay), linearity and limit of quantification (LOQ) all adequate for the therapeutic drug monitoring (TDM) of AEDs in plasma.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A glassy carbon electrode chemically modified with nickel nanoparticles coupled with reversed-phase chromatography with pulsed amperometric detection was used for the quantitative analysis of furanic aldehydes in a real sample of sugarcane bagasse hydrolysate. Chromatographic separation was carried out in isocratic conditions (acetonitrile/water, 1:9) with a flow rate of 1.0 mL/min, a detection potential of -50 mV vs. Pd, and the process was completed within 4 min. The analytical curves presented limits of detection of 4.0 × 10(-7) mol/L and 4.3 × 10(-7) mol/L, limits of quantification of 1.3 × 10(-6) and 1.4 × 10(-6) mol/L, amperometric sensitivities of 2.2 × 10(6) nA mol/L and 2.7 × 10(6) nA mol/L for furfural and 5-hydroxymethylfurfural, respectively. The values obtained in this sample by the standard addition method were 1.54 ± 0.02 g/kg for 5-hydroxymethylfurfural and 11.5 ± 0.2 g/kg for furfural. The results demonstrate that this new proposed method can be used for the quick detection of furanic aldehydes without the interference of other electroactive species, besides having other remarkable merits that include excellent peak resolution, analytical repeatability, sensitivity, and accuracy.
iCONVERT: an integrated device for the UV-assisted determination of H2S via mid-infrared gas sensors
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The antibiotics sulfamethoxazole (SMTX) and ciprofloxacin (CIP) are commonly used in human and veterinary medicine, which explains their occurrence in wastewater. Anaerobic reactors are low-cost, simple and suitable technology to wastewater treatment, but there is a lack of studies related to the removal efficiency of antibiotics. To overcome this knowledge gap, the objective of this study was to evaluate the removal kinetics of SMTX and CIP using a horizontal-flow anaerobic immobilized biomass reactor. Two different concentrations were evaluated, for SMTX 20 and 40 μg L(-1); for CIP 2.0 and 5.0 μg L(-1). The affluent and effluent analysis was carried out in liquid chromatography/tandem mass spectrometry (LC-MS/MS) with the sample preparation procedure using an off-line solid-phase extraction. This method was developed, validated and successfully applied for monitoring the affluent and effluent samples. The removal efficiency found for both antibiotics at the two concentrations studied was 97%. Chemical oxygen demand (COD) exhibited kinetic constants that were different from that observed for the antibiotics, indicating the absence of co-metabolism. Also, though the antibiotic concentration was increased, there was no inhibitory effect in the removal of COD and antibiotics.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A stability-indication high performance liquid chromatographic method has been developed for the determination of norfloxacin in tablet dosage forms. Optimum separation was achieved in less than 7 minutes using Eclipse Plus Zorbax C18 Agilent, 150 mm×4.6 mm i.d., 5 μm particle size column. The analyte was resolved by using a mobile phase 5% acetic acid aqueous solution and methanol (80:20, v/v) at a flow rate 1.0 ml/min on an isocratic high performance liquid chromatographic system at a wavelength of 277 nm. Linearity, system suitability, precision, sensitivity, selectivity, specific, and robustness were established by International Conference Harmonization guidelines. For stress studies the drug was subjected to photolysis, oxidation, acid, alkaline and neutral conditions. The analytical conditions and the solvent developed provided good resolution within a short analysis time and economic advantages. The proposed method not required sophisticated and expensive instrumentation.
Validation of analytical methodology for quantification of cefazolin sodium by liquid chromatography
Resumo:
A reversed-phase high performance liquid chromatography method was validated for the determination of cefazolin sodium in lyophilized powder for solution for injection to be applied for quality control in pharmaceutical industry. The liquid chromatography method was conducted on a Zorbax Eclipse Plus C18 column (250 x 4.6 mm, 5 μm), maintained at room temperature. The mobile phase consisted of purified water: acetonitrile (60: 40 v/v), adjusted to pH 8 with triethylamine. The flow rate was of 0.5 mL min-1 and effluents were monitored at 270 nm. The retention time for cefazolin sodium was 3.6 min. The method proved to be linear (r2 =0.9999) over the concentration range of 30-80 µg mL-1. The selectivity of the method was proven through degradation studies. The method demonstrated satisfactory results for precision, accuracy, limits of detection and quantitation. The robustness of this method was evaluated using the Plackett–Burman fractional factorial experimental design with a matrix of 15 experiments and the statistical treatment proposed by Youden and Steiner. Finally, the proposed method could be also an advantageous option for the analysis of cefazolin sodium, contributing to improve the quality control and to assure the therapeutic efficacy
Resumo:
A methodology to analyze organochlorine pesticides (OCPs) in water samples has been accomplished by using headspace stir bar sorptive extraction (HS-SBSE). The bars were in house coated with a thick film of PDMS in order to properly work in the headspace mode. Sampling was done by a novel HS-SBSE system whereas the analysis was performed by capillary GC coupled mass spectrometric detection (HS-SBSE-GC-MS). The extraction optimization, using different experimental parameters has been established by a standard equilibrium time of 120 min at 85 degrees C. A mixture of ACN/toluene as back extraction solvent promoted a good performance to remove the OCPs sorbed in the bar. Reproducibility between 2.1 and 14.8% and linearity between 0.96 and 1.0 were obtained for pesticides spiked in a linear range between 5 and 17 ng/g in water samples during the bar evaluation.