905 resultados para Gérard-Desrivières
Resumo:
The Antarctic Vostok ice core provided compelling evidence of the nature of climate, and of climate feedbacks, over the past 420,000 years. Marine records suggest that the amplitude of climate variability was smaller before that time, but such records are often poorly resolved. Moreover, it is not possible to infer the abundance of greenhouse gases in the atmosphere from marine records. Here we report the recovery of a deep ice core from Dome C, Antarctica, that provides a climate record for the past 740,000 years. For the four most recent glacial cycles, the data agree well with the record from Vostok. The earlier period, between 740,000 and 430,000 years ago, was characterized by less pronounced warmth in interglacial periods in Antarctica, but a higher proportion of each cycle was spent in the warm mode. The transition from glacial to interglacial conditions about 430,000 years ago (Termination V) resembles the transition into the present interglacial period in terms of the magnitude of change in temperatures and greenhouse gases, but there are significant differences in the patterns of change. The interglacial stage following Termination V was exceptionally long - 28,000 years compared to, for example, the 12,000 years recorded so far in the present interglacial period. Given the similarities between this earlier warm period and today, our results may imply that without human intervention, a climate similar to the present one would extend well into the future.
Resumo:
Clay minerals are examined in detail in the sediment from the Tonga Trench margin at Site 841 (Leg 135 ODP). The changes in amount and nature of secondary clays with depth provide an alternative explanation for the intensive alteration of volcanogenic material at convergent margins. A characteristic distribution of clay minerals with depth shows four distinct zones unexplainable by simple burial diagenesis processes. These are named the upper, reactive, lower and rhyolitic zones. The reactive zone is intercalated with numerous sills and is characterized by the dominant iron-rich clays such as saponite, corrensite and chlorite associated with analcime. The occurrence of such iron-rich clays, mostly associated with a large amount of analcime, yields chemical and mineralogical evidence for thermal diagenesis. The required heat for the diagenetic process was transferred from recently intruded basaltic andesite sills. In the vicinity of these intrusions, the iron-rich clay minerals may have formed at temperatures up to 200°C. A zoning with respect to clay and zeolite minerals indicates that the influence of the palaeoheat flow decreased with the distance from the intrusion. The formation of interlayered I/S, illite, kaolinite and aluminous chlorite, which are recognized as major secondary minerals within the rhyolitic complex, was mainly controlled by both early diagenesis at moderately elevated temperatures, and since the Eocene by burial diagenesis at low temperatures. The occurrence of a steam zone in an early stage of the intrusion is restricted to Miocene tuffs and has overprinted the early alteration of the volcanogenic material within the tuffs and has changed the originally pristine composition of the pore fluids.