807 resultados para Freedom of speech.
Resumo:
OBJECTIVES: The purpose of the study was to acoustically compare the performance of children who do and do not stutter on diadochokinesis tasks in terms of syllable duration, syllable periods, and peak intensity. METHODS: In this case-control study, acoustical analyses were performed on 26 children who stutter and 20 aged-matched normally fluent children (both groups stratified into preschoolers and school-aged children) during a diadochokinesis task: the repetition of articulatory segments through a task testing the ability to alternate movements. Speech fluency was assessed using the Fluency Profile and the Stuttering Severity Instrument. RESULTS: The children who stutter and those who do not did not significantly differ in terms of the acoustic patterns they produced in the diadochokinesis tasks. Significant differences were demonstrated between age groups independent of speech fluency. Overall, the preschoolers performed poorer. These results indicate that the observed differences are related to speech-motor age development and not to stuttering itself. CONCLUSIONS: Acoustic studies demonstrate that speech segment durations are most variable, both within and between subjects, during childhood and then gradually decrease to adult levels by the age of eleven to thirteen years. One possible explanation for the results of the present study is that children who stutter presented higher coefficients of variation to exploit the motor equivalence to achieve accurate sound production (i.e., the absence of speech disruptions).
Resumo:
The 3-UPU three degrees of freedom fully parallel manipulator, where U and P are for universal and prismatic pair respectively, is a very well known manipulator that can provide the platform with three degrees of freedom of pure translation, pure rotation or mixed translation and rotation with respect to the base, according to the relative directions of the revolute pair axes (each universal pair comprises two revolute pairs with intersecting and perpendicular axes). In particular, pure translational parallel 3-UPU manipulators (3-UPU TPMs) received great attention. Many studies have been reported in the literature on singularities, workspace, and joint clearance influence on the platform accuracy of this manipulator. However, much work has still to be done to reveal all the features this topology can offer to the designer when different architecture, i.e. different geometry are considered. Therefore, this dissertation will focus on this type of the 3-UPU manipulators. The first part of the dissertation presents six new architectures of the 3-UPU TPMs which offer interesting features to the designer. In the second part, a procedure is presented which is based on some indexes, in order to allows the designer to select the best architecture of the 3-UPU TPMs for a given task. Four indexes are proposed as stiffness, clearance, singularity and size of the manipulator in order to apply the procedure.
Resumo:
The topic of this thesis is the feedback stabilization of the attitude of magnetically actuated spacecraft. The use of magnetic coils is an attractive solution for the generation of control torques on small satellites flying inclined low Earth orbits, since magnetic control systems are characterized by reduced weight and cost, higher reliability, and require less power with respect to other kinds of actuators. At the same time, the possibility of smooth modulation of control torques reduces coupling of the attitude control system with flexible modes, thus preserving pointing precision with respect to the case when pulse-modulated thrusters are used. The principle based on the interaction between the Earth's magnetic field and the magnetic field generated by the set of coils introduces an inherent nonlinearity, because control torques can be delivered only in a plane that is orthogonal to the direction of the geomagnetic field vector. In other words, the system is underactuated, because the rotational degrees of freedom of the spacecraft, modeled as a rigid body, exceed the number of independent control actions. The solution of the control issue for underactuated spacecraft is also interesting in the case of actuator failure, e.g. after the loss of a reaction-wheel in a three-axes stabilized spacecraft with no redundancy. The application of well known control strategies is no longer possible in this case for both regulation and tracking, so that new methods have been suggested for tackling this particular problem. The main contribution of this thesis is to propose continuous time-varying controllers that globally stabilize the attitude of a spacecraft, when magneto-torquers alone are used and when a momentum-wheel supports magnetic control in order to overcome the inherent underactuation. A kinematic maneuver planning scheme, stability analyses, and detailed simulation results are also provided, with new theoretical developments and particular attention toward application considerations.
Resumo:
This work focused on the synthesis of novel monomers for the design of a series of oligo(p-benzamide)s following two approaches: iterative solution synthesis and automated solid phase protocols. These approaches present a useful method to the sequence-controlled synthesis of side-chain and main-chain functionalized oligomers for the preparation of an immense variety of nanoscaffolds. The challenge in the synthesis of such materials was their modification, while maintaining the characteristic properties (physical-chemical properties, shape persistence and anisotropy). The strategy for the preparation of predictable superstructures was devote to the selective control of noncovalent interactions, monodispersity and monomer sequence. In addition to this, the structure-properties correlation of the prepared rod-like soluble materials was pointed. The first approach involved the solution-based aramide synthesis via introduction of 2,4-dimethoxybenzyl N-amide protective group via an iterative synthetic strategy The second approach focused on the implementation of the salicylic acid scaffold to introduce substituents on the aromatic backbone for the stabilization of the OPBA-rotamers. The prepared oligomers were analyzed regarding their solubility and aggregation properties by systematically changing the degree of rotational freedom of the amide bonds, side chain polarity, monomer sequence and degree of oligomerization. The syntheses were performed on a modified commercial peptide synthesizer using a combination of fluorenylmethoxycarbonyl (Fmoc) and aramide chemistry. The automated synthesis allowed the preparation of aramides with potential applications as nanoscaffolds in supramolecular chemistry, e.g. comb-like-
Resumo:
We present a new method for the enhancement of speech. The method is designed for scenarios in which targeted speaker enrollment as well as system training within the typical noise environment are feasible. The proposed procedure is fundamentally different from most conventional and state-of-the-art denoising approaches. Instead of filtering a distorted signal we are resynthesizing a new “clean” signal based on its likely characteristics. These characteristics are estimated from the distorted signal. A successful implementation of the proposed method is presented. Experiments were performed in a scenario with roughly one hour of clean speech training data. Our results show that the proposed method compares very favorably to other state-of-the-art systems in both objective and subjective speech quality assessments. Potential applications for the proposed method include jet cockpit communication systems and offline methods for the restoration of audio recordings.
Resumo:
Four experiments investigated perception of major and minor thirds whose component tones were sounded simultaneously. Effects akin to categorical perception of speech sounds were found. In the first experiment, musicians demonstrated relatively sharp category boundaries in identification and peaks near the boundary in discrimination tasks of an interval continuum where the bottom note was always an F and the top note varied from A to A flat in seven equal logarithmic steps. Nonmusicians showed these effects only to a small extent. The musicians showed higher than predicted discrimination performance overall, and reaction time increases at category boundaries. In the second experiment, musicians failed to consistently identify or discriminate thirds which varied in absolute pitch, but retained the proper interval ratio. In the last two experiments, using selective adaptation, consistent shifts were found in both identification and discrimination, similar to those found in speech experiments. Manipulations of adapting and test showed that the mechanism underlying the effect appears to be centrally mediated and confined to a frequency-specific level. A multistage model of interval perception, where the first stages deal only with specific pitches may account for the results.
Resumo:
We present a new approach for corpus-based speech enhancement that significantly improves over a method published by Xiao and Nickel in 2010. Corpus-based enhancement systems do not merely filter an incoming noisy signal, but resynthesize its speech content via an inventory of pre-recorded clean signals. The goal of the procedure is to perceptually improve the sound of speech signals in background noise. The proposed new method modifies Xiao's method in four significant ways. Firstly, it employs a Gaussian mixture model (GMM) instead of a vector quantizer in the phoneme recognition front-end. Secondly, the state decoding of the recognition stage is supported with an uncertainty modeling technique. With the GMM and the uncertainty modeling it is possible to eliminate the need for noise dependent system training. Thirdly, the post-processing of the original method via sinusoidal modeling is replaced with a powerful cepstral smoothing operation. And lastly, due to the improvements of these modifications, it is possible to extend the operational bandwidth of the procedure from 4 kHz to 8 kHz. The performance of the proposed method was evaluated across different noise types and different signal-to-noise ratios. The new method was able to significantly outperform traditional methods, including the one by Xiao and Nickel, in terms of PESQ scores and other objective quality measures. Results of subjective CMOS tests over a smaller set of test samples support our claims.
Resumo:
Arts speech therapy (AST) is a therapeutic method within complementary medicine and has been practiced for decades for various medical conditions. It comprises listening and the recitation of different forms of speech exercises under the guidance of a licensed speech therapist. The aim of our study was to noninvasively investigate whether different types of recitation influence hemodynamics and oxygenation in the brain and skeletal leg muscle using near-infrared spectroscopy (NIRS). Seventeen healthy volunteers (eight men and nine women, mean age ± standard deviation 35.6 ± 12.7 years) were enrolled in the study. Each subject was measured three times on different days with the different types of recitation: hexameter, alliteration, and prose verse. Before, during, and after recitation, relative concentration changes of oxyhemoglobin (Δ[O2Hb]), deoxyhemoglobin (Δ[HHb]), total hemoglobin (Δ[tHb]), and tissue oxygenation saturation (StO2) were measured in the brain and skeletal leg muscle using a NIRS device. The study was performed with a randomized crossover design. Significant concentration changes were found during recitation of all verses, with mainly a decrease in Δ[O2Hb] and ΔStO2 in the brain, and an increase in Δ[O2Hb] and Δ[tHb] in the leg muscle during recitation. After the recitations, significant changes were mainly increases of Δ[HHb] and Δ[tHb] in the calf muscle. The Mayer wave spectral power (MWP) was also significantly affected, i.e., mainly the MWP of the Δ[O2Hb] and Δ[tHb] increased in the brain during recitation of hexameter and prose verse. The changes in MWP were also significantly different between hexameter and alliteration, and hexameter and prose. Possible physiological explanations for these changes are discussed. A probable reason is a different effect of recitations on the sympathetic nervous system. In conclusion, these changes show that AST has relevant effects on the hemodynamics and oxygenation of the brain and muscle.
Resumo:
Arts experts are commonly skeptical of applying scientific methods to aesthetic experiencing, which remains a field of study predominantly for the humanities. Laboratory research has however indicated that artworks may elicit emotional and physiological responses. Yet, this line of aesthetics research has previously suffered from insufficient external validity. We therefore conducted a study in which aesthetic perception was monitored in a fine-art museum, unrestricting to the viewers’ freedom of aesthetic choice. Visitors were invited to wear electronic gloves through which their locomotion, heart rate and skin conductance were continuously recorded. Emotional and aesthetic responses to selected works of an exhibition were assessed using a customized questionnaire. In a sample of 373 adult participants, we found that physiological responses during perception of an artwork were significantly related to aesthetic-emotional experiencing. The dimensions ‘Aesthetic Quality’, ‘Surprise/Humor’, ‘Dominance’ and ‘Curatorial Quality’ were associated with cardiac measures (heart rate variability, heart rate level) and skin conductance variability. This is first evidence that aesthetics can be statistically grounded in viewers’ physiology in an ecologically valid environment, the art gallery, enhancing our understanding of the effects of artworks and their curatorial staging.
Comparative Analysis of Russian and French Prosodies: Theoretical, Experimental and Applied Aspects"
Resumo:
Experience shows that in teaching the pronunciation of a foreign language, it is the native syllable stereotype that resists correction most strongly. This is because the syllable is the basic unit of the perception and production of speech, and syllabic production is highly automatic and to some degree determines the prosody of speech at all levels: accent, rhythm, phrase, etc. The results of psycho-physiological studies show that the human acoustic analyser is a typical contemplator organ and new acoustic qualities are perceived through their inclusion into the already existing system of values characteristic to the mother tongue. This results in the adaptation of the perception and so production of foreign speech to native patterns. The less conscious the perception of the unit and the more 'primitive' its status, the greater the degree of its auditory assimilation, and the syllable is certainly among the less controllable linguistic units. The group carried out a complex investigation of the French and Russian languages at the level of syllable realisation, focusing on the stressed syllable of both open and closed types. The useful acoustic characteristics of the French/Russian syllable pattern were determined through identifying a typical syllable pattern within the system of each of the two languages, comparing these patterns to establish their contrasting features, and observing and systematising deviations from the pattern typical of the French/Russian language teaching situation. The components of the syllable pattern shown to need particular attention in teaching French pronunciation to Russian native speakers were intensity, fundamental frequency, and duration. The group then developed a method of correction which combines the auditory and visual canals of sound signal perception and tested this method with groups of Russian students of different levels.
Resumo:
Excitation of tert-butylnitrite into the first and second UV absorption bands leads to efficient dissociation into the fragment radicals NO and tert-butoxy in their electronic ground states (2)Π and (2)E, respectively. Velocity distributions and angular anisotropies for the NO fragment in several hundred rotational and vibrational quantum states were obtained by velocity-map imaging and the recently developed 3D-REMPI method. Excitation into the well resolved vibronic progression bands (k = 0, 1, 2) of the NO stretch mode in the S(1) ← S(0) transition produces NO fragments mostly in the vibrational state with v = k, with smaller fractions in v = k - 1 and v = k - 2. It is concluded that dissociation occurs on the purely repulsive PES of S(1) without barrier. All velocity distributions from photolysis via the S(1)(nπ*) state are monomodal and show high negative anisotropy (β ≈ -1). The rotational distributions peak near j = 30.5 irrespective of the vibronic state S(1)(k) excited and the vibrational state v of the NO fragment. On average 46% of the excess energy is converted to kinetic energy, 23% and 31% remain as internal energy in the NO fragment and the t-BuO radical, respectively. Photolysis via excitation into the S(2) ← S(0) transition at 227 nm yields NO fragments with about equal populations in v = 0 and v = 1. The rotational distributions have a single maximum near j = 59.5. The velocity distributions are monomodal with positive anisotropy β ≈ 0.8. The average fractions of the excess energy distributed into translation, internal energy of NO, and internal energy of t-BuO are 39%, 23%, and 38%, respectively. In all cases ∼8500 cm(-1) of energy remain in the internal degrees of freedom of the t-BuO fragment. This is mostly assigned to rotational energy. An ab initio calculation of the dynamic reaction path shows that not only the NO fragment but also the t-BuO fragment gain large angular momentum during dissociation on the purely repulsive potential energy surface of S(2).
Resumo:
Traffic particle concentrations show considerable spatial variability within a metropolitan area. We consider latent variable semiparametric regression models for modeling the spatial and temporal variability of black carbon and elemental carbon concentrations in the greater Boston area. Measurements of these pollutants, which are markers of traffic particles, were obtained from several individual exposure studies conducted at specific household locations as well as 15 ambient monitoring sites in the city. The models allow for both flexible, nonlinear effects of covariates and for unexplained spatial and temporal variability in exposure. In addition, the different individual exposure studies recorded different surrogates of traffic particles, with some recording only outdoor concentrations of black or elemental carbon, some recording indoor concentrations of black carbon, and others recording both indoor and outdoor concentrations of black carbon. A joint model for outdoor and indoor exposure that specifies a spatially varying latent variable provides greater spatial coverage in the area of interest. We propose a penalised spline formation of the model that relates to generalised kringing of the latent traffic pollution variable and leads to a natural Bayesian Markov Chain Monte Carlo algorithm for model fitting. We propose methods that allow us to control the degress of freedom of the smoother in a Bayesian framework. Finally, we present results from an analysis that applies the model to data from summer and winter separately
Resumo:
PURPOSE: The surgical treatment of oral cancer results in functional and aesthetical impairments. Patients' quality of life is considerably impaired by oral symptoms resulting from therapy of oral cancer. In many cases the inevitable resection of the tumor, as well as the adjuvant radiochemotherapy will cause the destruction of physiologically and anatomically important structures. One focus of research was the specific rehabilitation of dental loss by functional dentures. Another was the course of 19 impairments (comprehension of speech for unknown others, comprehension of speech for familiar others, eating/swallowing, mobility of the tongue, opening range of the mouth, mobility of lower jaw, mobility of neck, mobility of arms and shoulders, sense of taste, sense of smell, appearance, strength, appetite, respiration, pain, swelling, xerostomia, halitosis). METHODS: Commissioned by the German, Austrian and Swiss cooperative group on tumors of the maxillofacial region (DOSAK), data were collected in 3.894 questionnaires at 43 hospitals in Germany, Austria and Switzerland. The catalogue comprised 147 items in 9 chapters. At the end of the enquiry, 1.761 anonymous questionnaires were returned by 38 hospitals. 1.652 of these could be evaluated regarding the question. RESULTS: The sum score of the 19 impairments was highly increased immediately after the operation and recovered over the next 6 months, without, however, reaching the pre-surgery level. Of 1.652 patients, only 35% did not lose any teeth during therapy. 23% lost up to 5, 17% up to 10 teeth. A quarter of the patients lost more than 10 teeth. The more teeth were lost, the greater the decline of quality of life (p < or = 0.001), although this could be allayed by the functionality of the dentures (p < or = 0.001). There is a reciprocal dependence between the functionality of dental prosthetics and impairment by eating/swallowing (p < or = 0.001). CONCLUSIONS: Patients' quality of life after radical surgery of a carcinoma of the oral cavity depends not only on the functionality of dentures and the specificity of rehabilitation, but also from the initial findings, the extent and location of the resection, the chosen therapy, the general circumstances of the patient's life as well as their strategies of coping. These factors, however, unlike those of functionality of dental prosthesis and rehabilitation, are not modifiable.
Resumo:
Open-ended interviews of 90 min length of 38 patients were analyzed with respect to speech stylistics, shown by Schucker and Jacobs to differentiate individuals with type A personality features from those with type B. In our patients, Type A/B had been assessed by the Bortner Personality Inventory. The stylistics studied were: repeated words swallowed words, interruptions, simultaneous speech, silence latency (between question and answer) (SL), speed of speech, uneven speed of speech (USS), explosive words (PW), uneven speech volume (USV), and speech volume. Correlations between both raters for all speech categories were high. Positive correlations between extent of type A and SL (r = 0.33; p = 0.022), USS (r = 0.51; p = 0.002), PW (r = 0.46; p = 0.003) and USV (r = 0.39; p = 0.012) were found. Our results indicate that the speech in nonstress open-ended interviews of type A individuals tends to show a higher emotional tension (positive correlations for USS PW and USV) and is more controlled in conversation (positive correlation for SL).