906 resultados para Fractional Differential Equation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this thesis we present a mathematical formulation of the interaction between microorganisms such as bacteria or amoebae and chemicals, often produced by the organisms themselves. This interaction is called chemotaxis and leads to cellular aggregation. We derive some models to describe chemotaxis. The first is the pioneristic Keller-Segel parabolic-parabolic model and it is derived by two different frameworks: a macroscopic perspective and a microscopic perspective, in which we start with a stochastic differential equation and we perform a mean-field approximation. This parabolic model may be generalized by the introduction of a degenerate diffusion parameter, which depends on the density itself via a power law. Then we derive a model for chemotaxis based on Cattaneo's law of heat propagation with finite speed, which is a hyperbolic model. The last model proposed here is a hydrodynamic model, which takes into account the inertia of the system by a friction force. In the limit of strong friction, the model reduces to the parabolic model, whereas in the limit of weak friction, we recover a hyperbolic model. Finally, we analyze the instability condition, which is the condition that leads to aggregation, and we describe the different kinds of aggregates we may obtain: the parabolic models lead to clusters or peaks whereas the hyperbolic models lead to the formation of network patterns or filaments. Moreover, we discuss the analogy between bacterial colonies and self gravitating systems by comparing the chemotactic collapse and the gravitational collapse (Jeans instability).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider piecewise defined differential dynamical systems which can be analysed through symbolic dynamics and transition matrices. We have a continuous regime, where the time flow is characterized by an ordinary differential equation (ODE) which has explicit solutions, and the singular regime, where the time flow is characterized by an appropriate transformation. The symbolic codification is given through the association of a symbol for each distinct regular system and singular system. The transition matrices are then determined as linear approximations to the symbolic dynamics. We analyse the dependence on initial conditions, parameter variation and the occurrence of global strange attractors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents an existence and localization result of unbounded solutions for a second-order differential equation on the half-line with functional boundary conditions. By applying unbounded upper and lower solutions, Green's functions and Schauder fixed point theorem, the existence of at least one solution is shown for the above problem. One example and one application to an Emden-Fowler equation are shown to illustrate our results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents an existence and localization result of unbounded solutions for a second-order differential equation on the half-line with functional boundary conditions. By applying unbounded upper and lower solutions, Green's functions and Schauder fixed point theorem, the existence of at least one solution is shown for the above problem. One example and one application to an Emden-Fowler equation are shown to illustrate our results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We develop an algorithm and computational implementation for simulation of problems that combine Cahn–Hilliard type diffusion with finite strain elasticity. We have in mind applications such as the electro-chemo- mechanics of lithium ion (Li-ion) batteries. We concentrate on basic computational aspects. A staggered algorithm is pro- posed for the coupled multi-field model. For the diffusion problem, the fourth order differential equation is replaced by a system of second order equations to deal with the issue of the regularity required for the approximation spaces. Low order finite elements are used for discretization in space of the involved fields (displacement, concentration, nonlocal concentration). Three (both 2D and 3D) extensively worked numerical examples show the capabilities of our approach for the representation of (i) phase separation, (ii) the effect of concentration in deformation and stress, (iii) the effect of Electronic supplementary material The online version of this article (doi:10.1007/s00466-015-1235-1) contains supplementary material, which is available to authorized users. B P. Areias pmaa@uevora.pt 1 Department of Physics, University of Évora, Colégio Luís António Verney, Rua Romão Ramalho, 59, 7002-554 Évora, Portugal 2 ICIST, Lisbon, Portugal 3 School of Engineering, Universidad de Cuenca, Av. 12 de Abril s/n. 01-01-168, Cuenca, Ecuador 4 Institute of Structural Mechanics, Bauhaus-University Weimar, Marienstraße 15, 99423 Weimar, Germany strain in concentration, and (iv) lithiation. We analyze con- vergence with respect to spatial and time discretization and found that very good results are achievable using both a stag- gered scheme and approximated strain interpolation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

RESUMO - O Huanglongbing (HLB ou Greening) é a doença mais importante e destrutiva da citricultura mundial. Presente de forma endêmica nos continentes asiático e africano há várias décadas, essa doença foi constatada no Brasil em 2004, sendo transmitida pelo psilídeo Diaphorina citri e causada por bactérias de floema Candidatus Liberibacter spp. Para auxiliar o estudo da doença, foram desenvolvidos modelos matemáticos para avaliação da propagação do HLB Citros. Este trabalho tem por objetivo a criação de um sistema para execução via web de um destes modelos, permitindo aos profissionais de diversas formações, em especial os das áreas biológicas, que são os especialistas do domínio em estudo, acesso rápido aos resultados fornecidos pelo modelo matemático, eliminando ainda a necessidade de conhecimento prévio em alguma linguagem de programação ou de métodos de resolução de equações diferenciais. O sistema foi completamente implementado em R, tendo sido o pacote deSolve usado para solução do modelo matemático e o framework web Shiny para a interface com usuário, sendo todos open source.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Fractional Fokker-Planck equations (FFPEs) have gained much interest recently for describing transport dynamics in complex systems that are governed by anomalous diffusion and nonexponential relaxation patterns. However, effective numerical methods and analytic techniques for the FFPE are still in their embryonic state. In this paper, we consider a class of time-space fractional Fokker-Planck equations with a nonlinear source term (TSFFPE-NST), which involve the Caputo time fractional derivative (CTFD) of order α ∈ (0, 1) and the symmetric Riesz space fractional derivative (RSFD) of order μ ∈ (1, 2). Approximating the CTFD and RSFD using the L1-algorithm and shifted Grunwald method, respectively, a computationally effective numerical method is presented to solve the TSFFPE-NST. The stability and convergence of the proposed numerical method are investigated. Finally, numerical experiments are carried out to support the theoretical claims.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Recently, some authors have considered a new diffusion model–space and time fractional Bloch-Torrey equation (ST-FBTE). Magin et al. (2008) have derived analytical solutions with fractional order dynamics in space (i.e., _ = 1, β an arbitrary real number, 1 < β ≤ 2) and time (i.e., 0 < α < 1, and β = 2), respectively. Yu et al. (2011) have derived an analytical solution and an effective implicit numerical method for solving ST-FBTEs, and also discussed the stability and convergence of the implicit numerical method. However, due to the computational overheads necessary to perform the simulations for nuclear magnetic resonance (NMR) in three dimensions, they present a study based on a two-dimensional example to confirm their theoretical analysis. Alternating direction implicit (ADI) schemes have been proposed for the numerical simulations of classic differential equations. The ADI schemes will reduce a multidimensional problem to a series of independent one-dimensional problems and are thus computationally efficient. In this paper, we consider the numerical solution of a ST-FBTE on a finite domain. The time and space derivatives in the ST-FBTE are replaced by the Caputo and the sequential Riesz fractional derivatives, respectively. A fractional alternating direction implicit scheme (FADIS) for the ST-FBTE in 3-D is proposed. Stability and convergence properties of the FADIS are discussed. Finally, some numerical results for ST-FBTE are given.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We present a finite volume method to solve the time-space two-sided fractional advection-dispersion equation on a one-dimensional domain. The spatial discretisation employs fractionally-shifted Grünwald formulas to discretise the Riemann-Liouville fractional derivatives at control volume faces in terms of function values at the nodes. We demonstrate how the finite volume formulation provides a natural, convenient and accurate means of discretising this equation in conservative form, compared to using a conventional finite difference approach. Results of numerical experiments are presented to demonstrate the effectiveness of the approach.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Transport processes within heterogeneous media may exhibit non- classical diffusion or dispersion which is not adequately described by the classical theory of Brownian motion and Fick’s law. We consider a space-fractional advection-dispersion equation based on a fractional Fick’s law. Zhang et al. [Water Resources Research, 43(5)(2007)] considered such an equation with variable coefficients, which they dis- cretised using the finite difference method proposed by Meerschaert and Tadjeran [Journal of Computational and Applied Mathematics, 172(1):65-77 (2004)]. For this method the presence of variable coef- ficients necessitates applying the product rule before discretising the Riemann–Liouville fractional derivatives using standard and shifted Gru ̈nwald formulas, depending on the fractional order. As an alternative, we propose using a finite volume method that deals directly with the equation in conservative form. Fractionally-shifted Gru ̈nwald formulas are used to discretise the Riemann–Liouville fractional derivatives at control volume faces, eliminating the need for product rule expansions. We compare the two methods for several case studies, highlighting the convenience of the finite volume approach.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33, 45K05, 35A05, 35S10, 35S15, 33E12