891 resultados para Fourier transform spectra
Resumo:
Many recent inverse scattering techniques have been designed for single frequency scattered fields in the frequency domain. In practice, however, the data is collected in the time domain. Frequency domain inverse scattering algorithms obviously apply to time-harmonic scattering, or nearly time-harmonic scattering, through application of the Fourier transform. Fourier transform techniques can also be applied to non-time-harmonic scattering from pulses. Our goal here is twofold: first, to establish conditions on the time-dependent waves that provide a correspondence between time domain and frequency domain inverse scattering via Fourier transforms without recourse to the conventional limiting amplitude principle; secondly, we apply the analysis in the first part of this work toward the extension of a particular scattering technique, namely the point source method, to scattering from the requisite pulses. Numerical examples illustrate the method and suggest that reconstructions from admissible pulses deliver superior reconstructions compared to straight averaging of multi-frequency data. Copyright (C) 2006 John Wiley & Sons, Ltd.
Resumo:
We solve a Dirichlet boundary value problem for the Klein–Gordon equation posed in a time-dependent domain. Our approach is based on a general transform method for solving boundary value problems for linear and integrable nonlinear PDE in two variables. Our results consist of the inversion formula for a generalized Fourier transform, and of the application of this generalized transform to the solution of the boundary value problem.
Resumo:
Hitherto unobserved overtone and combination bands of nitrous acid have been investigated by Fourier-transform infrared absorption spectroscopy and through the resonance enhancements they provide in the two-photon excition spectrum for forming OH(X) photofragments. Analysis of the band profiles associated with the second and third O—H stretching overtones of trans-HONO, and of the energy disposal into the OH(X) fragments resulting from two-photon dissociation mediated by these overtone levels, provide some clues as to the mechanism for intramolecular vibrational energy redistribution (IVR) within these vibrationally excited molecules. The work serves to highlight further the extreme sensitivity of vibrationally mediated photodissociation (VMP) as a means of revealing weak O—H stretching overtones, even in situations (as here) where the species of interest is but a minor constituent of an equilibrium mixture.
Resumo:
A high resolution Fourier transform infrared spectrum of methyleneimine, HN=CH2, has been obtained in the gas phase in the region 700 to 1300 cm−1. The rovibrational line intensities of the three lowest fundamentals ν7 (A′), ν8 (A″), and ν9 (A″) have been simulated including all Coriolis interactions between the three bands, and by fitting the observed spectrum the relative signs and magnitudes of the vibrational transition moments have been determined. All of the available spectroscopic data have been used to determine the harmonic force field of methyleneimine.
Resumo:
The Fourier-transform spectrum of CH3F from 2800 to 3100 cm−1, obtained by Guelachvili in Orsay at a resolution of about 0.003 cm−1, was analyzed. The effective Hamiltonian used contained all symmetry allowed interactions up to second order in the Amat-Nielsen classification, together with selected third-order terms, amongst the set of nine vibrational basis functions represented by the states ν1(A1), ν4(E), 2ν2(A1), ν2 + ν5(E), 2ν50(A1), and 2ν5±2(E). A number of strong Fermi and Coriolis resonances are involved. The vibrational Hamiltonian matrix was not factorized beyond the requirements of symmetry. A total of 59 molecular parameters were refined in a simultaneous least-squares analysis to over 1500 upper-state energy levels for J ≤ 20 with a standard deviation of 0.013 cm−1. Although the standard deviation remains an order of magnitude greater than the precision of the measurements, this work breaks new ground in the simultaneous analysis of interacting symmetric top vibrational levels, in terms of the number of interacting vibrational states and the number of parameters in the Hamiltonian.
Resumo:
Aims: To investigate the changes in the surface properties of Lactobacillus rhamnosus GG during growth, and relate them with the ability of the Lactobacillus cells to adhere to Caco-2 cells. Methods and Results: Lactobacillus rhamnosus GG was grown in complex medium, and cell samples taken at four time points and freeze dried. Untreated and trypsin treated freeze dried samples were analysed for their composition using SDS-PAGE analysis and Fourier transform infrared spectroscopy (FTIR), hydrophobicity and zeta potential, and for their ability to adhere to Caco-2 cells. The results suggested that in the case of early exponential phase samples (4 and 8 h), the net surface properties, i.e. hydrophobicity and charge, were determined to a large extent by anionic hydrophilic components, whereas in the case of stationary phase samples (13 and 26 h), hydrophobic proteins seemed to play the biggest role. Considerable differences were also observed between the ability of the different samples to adhere to Caco-2 cells; maximum adhesion was observed for the early stationary phase sample (13 h). The results suggested that the adhesion to Caco-2 cells was influenced by both proteins and non-proteinaceous compounds present on the surface of the Lactobacillus cells. Conclusion: The surface properties of Lact. rhamnosus GG changed during growth, which in return affected the ability of the Lactobacillus cells to adhere to Caco-2 cells. Significance and Impact of the Study: The levels of adhesion of Lactobacillus cells to Caco-2 cells were influenced by the growth time and reflected changes on the bacterial surface. This study provides critical information on the physicochemical factors that influence bacterial adhesion to intestinal cells.
Resumo:
Fourier transform infrared (FTIR) spectroscopic imaging using a focal plane array detector has been used to study atherosclerotic arteries with a spatial resolution of 3-4 mum, i.e., at a level that is comparable with cellular dimensions. Such high spatial resolution is made possible using a micro-attenuated total reflection (ATR) germanium objective with a high refractive index and therefore high numerical aperture. This micro-ATR approach has enabled small structures within the vessel wall to be imaged for the first time by FTIR. Structures observed include the elastic lamellae of the tunica media and a heterogeneous distribution of small clusters of cholesterol esters within an atherosclerotic lesion, which may correspond to foam cells. A macro-ATR imaging method was also applied, which involves the use of a diamond macro-ATR accessory. This study of atherosclerosis is presented as an illustrative example of the wider potential of these A TR imaging approaches for cardiovascular medicine and biomedical applications. (C) 2004 Wiley Periodicals, Inc.
Resumo:
Polycrystalline LiH was studied in situ using diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy to investigate the effect water vapour has on the rate of production of the corrosion products, particularly LiOH. The reaction rate of the formation of surface LiOH was monitored by measurement of the hydroxyl (OH) band at 3676 cm(-1). The initial hydrolysis rate of LiH exposed to water vapour at 50% relative humidity was found to be almost two times faster than LiH exposed to water vapour at 2% relative humidity. The hydrolysis rate was shown to be initially very rapid followed by a much slower, almost linear rate. The change in hydrolysis rate was attributed to the formation of a coherent layer of LiOH on the LiH surface. Exposure to lower levels of water vapour appeared to result in the formation of a more coherent corrosion product, resulting in effective passivation of the surface to further attack from water. Crown Copyright (c) 2007 Published by Elsevier B.V. All rights reserved.
Resumo:
Samples of Norway spruce wood were impregnated with a water-soluble melamine formaldehyde resin by using short-term vacuum treatment and long-term immersion, respectively. By means of Fourier transform infrared (FTIR) spectroscopy and UV microspectrophotometry, it was shown that only diffusion during long-term immersion leads to sufficient penetration of melamine resin into the wood structure, the flow of liquids in Norway spruce wood during vacuum treatment being greatly hindered by aspirated pits. After an immersion in aqueous melamine resin solution for 3 days, the resin had penetrated to a depth > 4 mm, which, after polymerization of the resin, resulted in an improvement of hardness comparable to the hardwood beech. A finite element model describing the effect of increasing depth of modification on hardness demonstrated that under the test conditions chosen for this study, a minimum impregnation depth of 2 mm is necessary to achieve an optimum increase in hardness. (C) 2004 Wiley Periodicals, Inc.
Resumo:
Pulsed Phase Thermography (PPT) has been proven effective on depth retrieval of flat-bottomed holes in different materials such as plastics and aluminum. In PPT, amplitude and phase delay signatures are available following data acquisition (carried out in a similar way as in classical Pulsed Thermography), by applying a transformation algorithm such as the Fourier Transform (FT) on thermal profiles. The authors have recently presented an extended review on PPT theory, including a new inversion technique for depth retrieval by correlating the depth with the blind frequency fb (frequency at which a defect produce enough phase contrast to be detected). An automatic defect depth retrieval algorithm had also been proposed, evidencing PPT capabilities as a practical inversion technique. In addition, the use of normalized parameters to account for defect size variation as well as depth retrieval from complex shape composites (GFRP and CFRP) are currently under investigation. In this paper, steel plates containing flat-bottomed holes at different depths (from 1 to 4.5 mm) are tested by quantitative PPT. Least squares regression results show excellent agreement between depth and the inverse square root blind frequency, which can be used for depth inversion. Experimental results on steel plates with simulated corrosion are presented as well. It is worth noting that results are improved by performing PPT on reconstructed (synthetic) rather than on raw thermal data.
Resumo:
The polymer conformation structure of gluten extracted from a Polish wheat cultivar, Korweta, and gluten subtractions obtained from 2 U.K. breadmaking and biscuit flour cultivars, Hereward and Riband, was investigated using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The results showed the conformation of proteins varied between flour, hydrated flour, and hydrated gluten. The beta-sheet structure increased progressively from flour to hydrated flour and to hydrated gluten. In hydrated gluten protein fractions comprising gliadin, soluble glutenin, and gel protein, beta-sheet structure increased progressively from soluble gliadin and glutenin to gluten and gel protein; beta-sheet content was also greater in the gel protein from the breadmaking flour Hereward than the biscuit flour Riband.
Resumo:
Ibuprofen (IB), a BCS Class II compound, is a highly crystalline substance with poor solubility properties. Here we report on the disruption of this crystalline structure upon intimate contact with the polymeric carrier cross-linked polyvinylpyrrolidone (PVP-CL) facilitated by low energy simple mixing. Whilst strong molecular interactions between APIs and carriers within delivery systems would be expected on melting or through solvent depositions, this is not the case with less energetic mixing. Simple mixing of the two compounds resulted in a significant decrease in the differential scanning calorimetry (DSC) melting enthalpy for IB, indicating that approximately 30% of the crystalline content was disordered. This structural change was confirmed by broadening and intensity diminution of characteristic IB X-ray powder diffractometry (PXRD) peaks. Unexpectedly, the crystalline content of the drug continued to decrease upon storage under ambient conditions. The molecular environment of the mixture was further investigated using Fourier transform infrared (FT-IR) and Fourier transform Raman (FT-Raman) spectroscopy. These data suggest that the primary interaction between these components of the physical mix is hydrogen bonding, with a secondary mechanism involving electrostatic/hydrophobic interactions through the IB benzene ring. Such interactions and subsequent loss of crystallinity could confer a dissolution rate advantage for IB. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
There are several advantages of using metabolic labeling in quantitative proteomics. The early pooling of samples compared to post-labeling methods eliminates errors from different sample processing, protein extraction and enzymatic digestion. Metabolic labeling is also highly efficient and relatively inexpensive compared to commercial labeling reagents. However, methods for multiplexed quantitation in the MS-domain (or ‘non-isobaric’ methods), suffer from signal dilution at higher degrees of multiplexing, as the MS/MS signal for peptide identification is lower given the same amount of peptide loaded onto the column or injected into the mass spectrometer. This may partly be overcome by mixing the samples at non-uniform ratios, for instance by increasing the fraction of unlabeled proteins. We have developed an algorithm for arbitrary degrees of nonisobaric multiplexing for relative protein abundance measurements. We have used metabolic labeling with different levels of 15N, but the algorithm is in principle applicable to any isotope or combination of isotopes. Ion trap mass spectrometers are fast and suitable for LC-MS/MS and peptide identification. However, they cannot resolve overlapping isotopic envelopes from different peptides, which makes them less suitable for MS-based quantitation. Fourier-transform ion cyclotron resonance (FTICR) mass spectrometry is less suitable for LC-MS/MS, but provides the resolving power required to resolve overlapping isotopic envelopes. We therefore combined ion trap LC-MS/MS for peptide identification with FTICR LC-MS for quantitation using chromatographic alignment. We applied the method in a heat shock study in a plant model system (A. thaliana) and compared the results with gene expression data from similar experiments in literature.
Resumo:
The self-assembly of peptide YYKLVFFC based on a fragment of the amyloid beta (A) peptide, A beta 16-20, KLVFF has been studied in aqueous solution. The peptide is designed with multiple functional residues to examine the interplay between aromatic interactions and charge on the self-assembly, as well as specific transformations such as the pH-induced phenol-phenolate transition of the tyrosine residue. Circular dichroism (CD) and Fourier-transform infrared (FTIR) spectroscopies are used to investigate the conditions for beta-sheet self-assembly and the role of aromatic interactions in the CD spectrum as a function of pH and concentration. The formation of well-defined fibrils at pH 4.7 is confirmed by cryo-TEM (transmission electron microscope) and negative stain TEM. The morphology changes at higher pH, and aggregates of short twisted fibrils are observed at pH 11. Polarized optical microscopy shows birefringence at a low concentration (1 wt.-%) of YYKLVFFC in aqueous solution, and small-angle X-ray scattering was used to probe nematic phase formation in more detail. A pH-induced transition from nematic to isotropic phases is observed on increasing pH that appears to be correlated to a reduction in aggregate anisotropy upon increasing pH.
Resumo:
Laboratory Fourier transform spectroscopy of pure water vapor and water vapor mixed with air has been conducted between 1200 and 8000 cm−1 and at temperatures between 293 and 351 K with the purpose of detecting and characterizing the water vapor continuum. The spectral features of the continuum within the major water absorption bands are presented and compared where possible to those from previous experimental studies and to the commonly used MT_CKD and CKD models. It was observed that in the main, both models adequately capture the general spectral form of the continuum; however, there were a number of exceptions. Overall, there is no evidence to indicate that MT_CKD is an improvement upon the older CKD model in these spectral regions. There was generally good agreement between our results and those of other experimental investigators. The general mathematical forms of the self-continuum temperature dependence, given by both Roberts et al. (1976) and CKD/MT_CKD, fit well to the experimental continuum in these spectral regions. However, the range of temperatures over which we made measurements is not sufficient to discriminate between these two forms or to exclude the possibility of other forms of temperature dependence being more appropriate. At the same time, the actual parameters currently used in CKD/MT_CKD to describe the temperature dependence in many spectral regions cannot reproduce the observed strong spectral variation in the temperature dependence. It has not been possible to make definitive conclusions about the magnitude of the continuum absorption in the far wings of the absorption bands investigated here.