975 resultados para Ford automobile
Resumo:
New air traffic automated separation management concepts are constantly under investigation. Yet most of the automated separation management algorithms proposed over the last few decades have assumed either perfect communication or exact knowledge of all aircraft locations. In realistic environments, these idealized assumptions are not valid and any communication failure can potentially lead to disastrous outcomes. This paper examines the separation performance behavior of several popular algorithms during periods of information loss. This comparison is done through simulation studies. These simulation studies suggest that communication failure can cause the performance of these separation management algorithms to degrade significantly. This paper also describes some preliminary flight tests.
Resumo:
Machine vision represents a particularly attractive solution for sensing and detecting potential collision-course targets due to the relatively low cost, size, weight, and power requirements of the sensors involved (as opposed to radar). This paper describes the development and evaluation of a vision-based collision detection algorithm suitable for fixed-wing aerial robotics. The system was evaluated using highly realistic vision data of the moments leading up to a collision. Based on the collected data, our detection approaches were able to detect targets at distances ranging from 400m to about 900m. These distances (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning of between 8-10 seconds ahead of impact, which approaches the 12.5 second response time recommended for human pilots. We make use of the enormous potential of graphic processing units to achieve processing rates of 30Hz (for images of size 1024-by- 768). Currently, integration in the final platform is under way.
Resumo:
This paper proposes a novel automated separation management concept in which onboard decision support is integrated within a centralised air traffic separation management system. The onboard decision support system involves a decentralised separation manager that can overrule air traffic management instructions under certain circumstances. This approach allows the advantages of both centralised and decentralised concepts to be combined (and disadvantages of each separation management approach to be mitigated). Simulation studies are used to illustrate the potential benefits of the combined separation management concept.
Resumo:
Machine vision represents a particularly attractive solution for sensing and detecting potential collision-course targets due to the relatively low cost, size, weight, and power requirements of vision sensors (as opposed to radar and TCAS). This paper describes the development and evaluation of a real-time vision-based collision detection system suitable for fixed-wing aerial robotics. Using two fixed-wing UAVs to recreate various collision-course scenarios, we were able to capture highly realistic vision (from an onboard camera perspective) of the moments leading up to a collision. This type of image data is extremely scarce and was invaluable in evaluating the detection performance of two candidate target detection approaches. Based on the collected data, our detection approaches were able to detect targets at distances ranging from 400m to about 900m. These distances (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning of between 8-10 seconds ahead of impact, which approaches the 12.5 second response time recommended for human pilots. We overcame the challenge of achieving real-time computational speeds by exploiting the parallel processing architectures of graphics processing units found on commercially-off-the-shelf graphics devices. Our chosen GPU device suitable for integration onto UAV platforms can be expected to handle real-time processing of 1024 by 768 pixel image frames at a rate of approximately 30Hz. Flight trials using manned Cessna aircraft where all processing is performed onboard will be conducted in the near future, followed by further experiments with fully autonomous UAV platforms.
Resumo:
When classifying a signal, ideally we want our classifier to trigger a large response when it encounters a positive example and have little to no response for all other examples. Unfortunately in practice this does not occur with responses fluctuating, often causing false alarms. There exists a myriad of reasons why this is the case, most notably not incorporating the dynamics of the signal into the classification. In facial expression recognition, this has been highlighted as one major research question. In this paper we present a novel technique which incorporates the dynamics of the signal which can produce a strong response when the peak expression is found and essentially suppresses all other responses as much as possible. We conducted preliminary experiments on the extended Cohn-Kanade (CK+) database which shows its benefits. The ability to automatically and accurately recognize facial expressions of drivers is highly relevant to the automobile. For example, the early recognition of “surprise” could indicate that an accident is about to occur; and various safeguards could immediately be deployed to avoid or minimize injury and damage. In this paper, we conducted initial experiments on the extended Cohn-Kanade (CK+) database which shows its benefits.
Resumo:
Objective: Flood is the most common natural disaster in Australia and causes more loss of life than any other disaster. This article describes the incidence and causes of deaths directly associated with floods in contemporary Australia. ---------- Methods: The present study compiled a database of flood fatalities in Australia in the period of 1997–2008 inclusive. The data were derived from newspapers and historic accounts, as well as government and scientific reports. Assembled data include the date and location of fatalities, age and gender of victims and the circumstances of the death. ---------- Results: At least 73 persons died as a direct result of floods in Australia in the period of 1997–2008. The largest number of fatalities occurred in New South Wales and Queensland. Most fatalities occurred during February, and among men (71.2%). People between the ages of 10 and 29 and those over 70 years are overrepresented among those drowned. There is no evident decline in the number of deaths over time. 48.5% fatalities related to motor vehicle use. 26.5% fatalities occurred as a result of inappropriate or high-risk behaviour during floods. ---------- Conclusion: In modern developed countries with adequate emergency response systems and extensive resources, deaths that occur in floods are almost all eminently preventable. Over 90% of the deaths are caused by attempts to ford flooded waterways or inappropriate situational conduct. Knowledge of the leading causes of flood fatalities should inform public awareness programmes and public safety police enforcement activities.
Resumo:
The following paper proposes a novel application of Skid-to-Turn maneuvers for fixed wing Unmanned Aerial Vehicles (UAVs) inspecting locally linear infrastructure. Fixed wing UAVs, following the design of manned aircraft, commonly employ Bank-to-Turn ma- neuvers to change heading and thus direction of travel. Whilst effective, banking an aircraft during the inspection of ground based features hinders data collection, with body fixed sen- sors angled away from the direction of turn and a panning motion induced through roll rate that can reduce data quality. By adopting Skid-to-Turn maneuvers, the aircraft can change heading whilst maintaining wings level flight, thus allowing body fixed sensors to main- tain a downward facing orientation. An Image-Based Visual Servo controller is developed to directly control the position of features as captured by onboard inspection sensors. This improves on the indirect approach taken by other tracking controllers where a course over ground directly above the feature is assumed to capture it centered in the field of view. Performance of the proposed controller is compared against that of a Bank-to-Turn tracking controller driven by GPS derived cross track error in a simulation environment developed to replicate the field of view of a body fixed camera.
Resumo:
Machine vision represents a particularly attractive solution for sensing and detecting potential collision-course targets due to the relatively low cost, size, weight, and power requirements of the sensors involved. This paper describes the development of detection algorithms and the evaluation of a real-time flight ready hardware implementation of a vision-based collision detection system suitable for fixed-wing small/medium size UAS. In particular, this paper demonstrates the use of Hidden Markov filter to track and estimate the elevation (β) and bearing (α) of the target, compares several candidate graphic processing hardware choices, and proposes an image based visual servoing approach to achieve collision avoidance
Resumo:
Of the numerous factors that play a role in fatal pedestrian collisions, the time of day, day of the week, and time of year can be significant determinants. More than 60% of all pedestrian collisions in 2007 occurred at night, despite the presumed decrease in both pedestrian and automobile exposure during the night. Although this trend is partially explained by factors such as fatigue and alcohol consumption, prior analysis of the Fatality Analysis Reporting System database suggests that pedestrian fatalities increase as light decreases after controlling for other factors. This study applies graphical cross-tabulation, a novel visual assessment approach, to explore the relationships among collision variables. The results reveal that twilight and the first hour of darkness typically observe the greatest frequency of pedestrian fatal collisions. These hours are not necessarily the most risky on a per mile travelled basis, however, because pedestrian volumes are often still high. Additional analysis is needed to quantify the extent to which pedestrian exposure (walking/crossing activity) in these time periods plays a role in pedestrian crash involvement. Weekly patterns of pedestrian fatal collisions vary by time of year due to the seasonal changes in sunset time. In December, collisions are concentrated around twilight and the first hour of darkness throughout the week while, in June, collisions are most heavily concentrated around twilight and the first hours of darkness on Friday and Saturday. Friday and Saturday nights in June may be the most dangerous times for pedestrians. Knowing when pedestrian risk is highest is critically important for formulating effective mitigation strategies and for efficiently investing safety funds. This applied visual approach is a helpful tool for researchers intending to communicate with policy-makers and to identify relationships that can then be tested with more sophisticated statistical tools.
Resumo:
Background For CAM to feature prominently in health care decision-making there is a need to expand the evidence-base and to further incorporate economic evaluation into research priorities. In a world of scarce health care resources and an emphasis on efficiency and clinical efficacy, CAM, as indeed do all other treatments, requires rigorous evaluation to be considered in budget decision-making. Methods Economic evaluation provides the tools to measure the costs and health consequences of CAM interventions and thereby inform decision making. This article offers CAM researchers an introductory framework for understanding, undertaking and disseminating economic evaluation. The types of economic evaluation available for the study of CAM are discussed, and decision modelling is introduced as a method for economic evaluation with much potential for use in CAM. Two types of decision models are introduced, decision trees and Markov models, along with a worked example of how each method is used to examine costs and health consequences. This is followed by a discussion of how this information is used by decision makers. Conclusions Undoubtedly, economic evaluation methods form an important part of health care decision making. Without formal training it can seem a daunting task to consider economic evaluation, however, multidisciplinary teams provide an opportunity for health economists, CAM practitioners and other interested researchers, to work together to further develop the economic evaluation of CAM.
Resumo:
We alternately measured on-road and in-vehicle ultrafine (<100 nm) particle (UFP) concentration for 5 passenger vehicles that comprised an age range of 18 years. A range of cabin ventilation settings were assessed during 301 trips through a 4 km road tunnel in Sydney, Australia. Outdoor airflow(ventilation) rates under these settings were quantified on open roads using tracer gas techniques. Significant variability in tunnel trip average median in-cabin/on-road (I/O) UFP ratios was observed (0.08 to ∼1.0). Based on data spanning all test automobiles and ventilation settings, a positive linear relationship was found between outdoor air flow rate and I/O ratio, with the former accounting for a substantial proportion of variation in the latter (R2 ) 0.81). UFP concentrations recorded in cabin during tunnel travel were significantly higher than those reported by comparable studies performed on open roadways. A simple mathematical model afforded the ability to predict tunnel trip average in-cabin UFP concentrations with good accuracy. Our data indicate that under certain conditions, in-cabin UFP exposures incurred during tunnel travel may contribute significantly to daily exposure. The UFP exposure of automobile occupants appears strongly related to their choice of ventilation setting and vehicle.