969 resultados para Fluorophosphate glasses
Resumo:
Fundamental aspects of the conception and applications of ecomaterials, in particular porous materials in the perspective of green chemistry are discussed in this paper. General recommendations for description and classification of porous materials are reviewed briefly. By way of illustration, some case studies of materials design and applications in pollution detection and remediation are described. It is shown here how different materials developed by our groups, such as porous glasses, ecomaterials from biomass and anionic clays were programmed to perform specific functions. A discussion of the present and future of ecomaterials in green chemistry is presented along with important key goals.
Resumo:
Glass ionomer cements (GICs) are products of the acid-base setting reaction between an finely fluoro-alumino silicate glass powder and poly(acrylic acid) in aqueous solution. The sol gel method is an adequate route of preparation of the glasses used to obtain the GICs. The objective of this paper was to compare two powders: a commercial and an experimental and to investigate the structural changes during hardening of the cements by FTIR and Al MAS NMR. These analyses showed that the experimental glass powder reacted with organic acid to form the GICs and it is a promising material to manufacture dental cements.
Resumo:
Glass-ceramics are prepared by controlled separation of crystal phases in glasses, leading to uniform and dense grain structures. On the other hand, chemical leaching of soluble crystal phases yields porous glass-ceramics with important applications. Here, glass/ceramic interfaces of niobo-, vanado- and titano-phosphate glasses were studied by micro-Raman spectroscopy, whose spatial resolution revealed the multiphase structures. Phase-separation mechanisms were also determined by this technique, revealing that interface composition remained unchanged as the crystallization front advanced for niobo- and vanadophosphate glasses (interface-controlled crystallization). For titanophosphate glasses, phase composition changed continuously with time up to the equilibrium composition, indicating a spinodal-type phase separation.
Resumo:
Glass-ceramics foams prepared from glasses of the SiO2-Na2O-CaO-P2O5 by replication process were obtained and characterized in terms of their chemical and physical properties by X-ray fluorescence, X-ray diffraction, laser diffraction, thermal analysis, density, mechanical strength, microstructural and cytotoxic analysis. The results showed that it is possible to produce glass-ceramic foams by the replication method with optimized properties but cytotoxic analysis indicates that the glass-ceramic foams are not bioactive materials. Mechanical strength values varying from 0.5 to 1.0 MPa and from 0.8 to 2.3 MPa were reached for mean particle sizes of 10 and 6 µm, respectively.
Resumo:
The electrochemical study of glass like tungsten oxide derivatives requires the construction of special electrodes due to the fact that these glasses are not conductive. Electrodes modified with WO3 change their color when submitted to some potential perturbation. The color change of the electrochromic materials was observed in situ by coupling an electrochemical cell to a stereomicroscope. The constructed cell is versatile and may represent a great contribution to the electrochemical studies of materials, especially in the systems where it is interest to observe the working electrode surface during the electrochemical experiment.
Resumo:
This paper presents a historical of the Biosilicate®, a bioactive glass-ceramic developed at the Vitreous Materials Laboratory of the Federal University of São Carlos, Brazil. After decades of study accomplished with bioactive glasses and glass-ceramics, Biosilicate® results from a natural evolution and has similar bioactivity index, but far superior mechanical properties than of all bioactive glasses. Biosilicate® is almost fully crystalline and also exhibits much higher bioactivity than all the currently commercially available bioactive glass-ceramics. Due to its special characteristics, Biosilicate® has been successfully tested for several medical and dental applications as we thoroughly discuss in this review paper.
Resumo:
In this work we report a systematic study on the influence of the chemical nature of silver precursors on the formation of glass-ceramics from oxide glasses. Thermal, structural and optical properties were analyzed as a function of the glass composition. Controlled crystallization was achieved by thermal treatment of the samples above glass transition. The influence of time of treatment on both nanoparticle growth and optical properties of the samples was studied by transmission electron microscopy and UV-Vis spectroscopy, respectively. Results showed that only glasses containing AgCl and AgNO3 led to glass-ceramics growth after thermal treatment.
Resumo:
The viability of small-scale heavy-metal waste immobilization into iron phosphate glasses was investigated. Several waste forms containing different amounts of heavy-ion wastes were evaluated (5%, 10%, 15%, 20%, 26%, 33%, 40% and 50% by mass) and their X-ray diffraction patterns revealed that no crystallization occurred in glasses with waste concentrations up to 26%. The dissolution rates for all of the reported glass compositions (ca. 10-8 g cm-2 min-1) are similar to those reported for the materials most commonly used for waste vitrification. Iron phosphate glasses thus proved to be very useful for the immobilization of heavy-metal wastes, exhibiting good contention and chemical durability comparable to that of borosilicate glasses.
Resumo:
AbstractSilicon oxycarbide glasses (SiOC) are a class of amorphous materials with a similar silica glass structure, in which oxygen atoms are partially replaced by tetracoordenated carbon atoms. The presence of carbon atoms covalently bound to the silicon atoms creates a more interconnected structure with better strength, and excellent chemical stability than conventional silica. SiOCs are easily prepared by the pyrolysis of polysiloxanes and can potentially be implemented in several technological applications that require high temperatures. This paper mainly addresses the preparation, structure, and properties of SiOC. Furthermore, potential applications of SiOC are also introduced.
Resumo:
2015 is the Year of Light, according to UNESCO. Chemistry has a close relationship with light and one of the materials that allows such synergy is glass. Depending on the chemical composition of the glass, it is possible to achieve technological applications for the whole range of wavelengths extending from the region of the microwave to gamma rays. This diversity of applications opens a large range of research where chemistry, as a central science, overlaps the fields of physics, engineering, medicine, etc., generating a huge amount of knowledge and technological products used for humanity. This review article aimed at discussing some families of glasses, illustrating some applications. Due to the extension of the theme, and all points raised, we thought it would be good to divide the article into two parts. In the first part we focus on the properties of heavy metal oxide glasses, fluoride glasses and chalcogenide glasses. In the second part we emphasize the properties of glassy thin films prepared by sol-gel methodology and some applications, of both glasses as the films in photonics, and more attention was given to the nonlinear properties and uses of photonic fibers.
Resumo:
In this second part it will be discussed some photonic applications of glassy and glass ceramic thin films which can be used as planar waveguides. Some photonic applications require certain specifications of glass, which can be quantified by studying the nonlinear optical properties of the materials. Therefore, a brief introduction of these phenomena is discussed, as well as the use of femtosecond lasers to manipulate the composition or for the preparation of waveguides into glasses. Finally, the article will address a brief introduction on microstructured optical fibers and commercial application prospects for these devices.
Resumo:
Silica based biomaterials, such as melt-derived bioactive glasses and sol-gel glasses, have been used for a long time in bone healing applications because of their ability to form hydroxyapatite and to stimulate stem cell proliferation and differentiation. In this study, bone marrow derived cells were cultured with bioactive glass and sol-gel silica, and seeded into porous polymer composite scaffolds that were then implanted femorally and subcutaneously in rats to monitor their migration inside host tissue. Bone marrow derived cells were also injected intraperitoneally. Transplanted cells migrated to various tissues inside the host, including the lung, liver spleen, thymus and bone marrow. The method of transplantation affected the time frame of cell migration, with intraperitoneal injection being the fastest and femoral implantation the slowest, but not the target tissues of migration. Transplanted donor cells had a limited lifetime in the host and were later eliminated from all tested tissues. Bioactive glass, however, affected the implanted cells negatively. When it was present in the scaffold no donor cells were found in any of the tested host tissues. Bioactive glass S53P4 was found to support both osteoblastic and osteoclastic phenotype of bone marrow derived cells, but it was resistant to the resorbing effect of osteoclastic bone marrow derived cells, showing that bioactive glass is rather dissolved through physicochemical reactions than resorbed by cells. Fast-dissolving silica sol gel in microparticulate form was found to increase collagen formation by bone marrow derived cells, while slow dissolving silica microparticles enhanced their proliferation, suggesting that the dissolution rate of silica controls the response of bone marrow derived cells.
Resumo:
Bioactive glasses (BGs) form a group of synthetic, surface-active, composition-dependent, silica-based biomaterials with osteoconductive, osteopromotive, and even angiogenic, as well as antibacterial, properties. A national interdisciplinary research group, within the Combio Technology Program (2003–2007), developed a porous load-bearing composite for surgical applications made of BG 1–98 and polymer fibers. The pre-clinical part of this thesis focused on the in vitro and in vivo testing of the composite materials in a rabbit femur and spinal posterolateral fusion model. The femur model failed to demonstrate the previously seen positive effect of BG 1–98 on osteogenesis, probably due to the changed resorption properties of BG in the form of fibers. The spine study was terminated early due to adverse events. In vitro cultures showed the growth inhibition of human mesenchymal stems next to BG 1–98 fibers and radical pH changes. A prospective, long-term, follow-up study was conducted on BG–S53P4 and autogenous bone used as bone graft substitutes for instrumented posterolateral spondylodesis in the treatment of degenerative spondylolisthesis (n=17) and unstable burst fractures (n=10) during 1996–1998. The operative outcome was evaluated from X-rays and CT scans, and a clinical examination was also performed. On the BG side, a solid fusion was observed in the CT scans of 12 patients, and a partial fusion was found in 5 patients, the result being a total fusion rate in all fusion sites (n=41) 88% for levels L4/5 and L5/S1 in the spondylolisthesis group. In the spine fracture group, solid fusion was observed in five patients, and partial fusion was found in five resulting in a total fusion rate of 71% of all fusion sites (n=21). The pre-clinical results suggest that under certain conditions the physical form of BG can be more critical than its chemical composition when a clinical application is designed. The first long-term clinical results concerning the use of BG S53P4 as bone graft material in instrumented posterolateral spondylodesis seems to be a safe procedure, associated with a very low complication rate. BG S53P4 used as a stand-alone bone substitute cannot be regarded as being as efficient as AB in promoting solid fusion.
Resumo:
Työn tavoitteena oli kehittää kanavistojen ja kattilan eristyksien mallintamista 3D-laitossuunitteluohjelmassa sekä siitä saatavia materiaalilistoja. Kanavistojen eristeitä kuvastavaa geometriaa muokattiin vastaamaan eristyksen todellista tilanvarausta. Kattilan eristyksen mallintaminen on aikaisemmin jouduttu tekemään manuaalisesti, työssä kehitettiin työkalu, jonka avulla eristysten materiaalitiedot ja oikeat tilanvaraukset saadaan lisättyä 3D-malliin. Kaikkia eristyksen mallintamista ei kuitenkaan pystytä mielekkäästi toteuttamaan automaattisesti työkalujen avulla, näitä kohteita ovat tukikehikkorakenteet kuten kattilan vinttikehikko. Lisäksi täytyi selvittää, mitä tietoja eristyksien materiaalimäärälistoille vaaditaan, ja kuinka nämä tiedot saataisiin listoihin mukaan. Jotta kaikki eristettävät kohteet saadaan tuotettaviin materiaalilistoihin, on ohjelmaan lisättävä käytettäväksi uusia komponentteja. Näitä ovat uudet kanavistojen osat sekä muun muassa venturit ja huoltoluukut kanavistoille. Kattilaan asennettavat laitteet kuten näkölasit ja polttimet vaativat tukirakenteen, joka samalla toimii kotelona putkistojen taivutuksille. Näitä kohteita on aikaisemmin tuotu vanhoista projekteista tai ne on tehty suunnittelijan toimesta uusiksi. Työssä esitettiin uusi tapa mallintaa kattilan pinnat, jolloin niihin voidaan liittää koteloita erillisestä komponenttikirjastosta. Kanavistojen eristyksien materiaalimäärälistojen tuottaminen suoraan ohjelmasta auto-matisoitiin. Kattilan ja siihen liittyvien eristyskehysrakenteiden listojen tuotanto kuitenkin vaatii yhteisten toimintamallien kehittämistä. Tämän työn uudet menetelmät mahdollistavat yhä uusien työkalujen kehittämisen, esimerkiksi automaattisen eristysten teknisten piirustusten kuvatuotannon tulevaisuudessa.
Resumo:
The power is still today an issue in wearable computing applications. The aim of the present paper is to raise awareness of the power consumption of wearable computing devices in specific scenarios to be able in the future to design energy efficient wireless sensors for context recognition in wearable computing applications. The approach is based on a hardware study. The objective of this paper is to analyze and compare the total power consumption of three representative wearable computing devices in realistic scenarios such as Display, Speaker, Camera and microphone, Transfer by Wi-Fi, Monitoring outdoor physical activity and Pedometer. A scenario based energy model is also developed. The Samsung Galaxy Nexus I9250 smartphone, the Vuzix M100 Smart Glasses and the SimValley Smartwatch AW-420.RX are the three devices representative of their form factors. The power consumption is measured using PowerTutor, an android energy profiler application with logging option and using unknown parameters so it is adjusted with the USB meter. The result shows that the screen size is the main parameter influencing the power consumption. The power consumption for an identical scenario varies depending on the wearable devices meaning that others components, parameters or processes might impact on the power consumption and further study is needed to explain these variations. This paper also shows that different inputs (touchscreen is more efficient than buttons controls) and outputs (speaker sensor is more efficient than display sensor) impact the energy consumption in different way. This paper gives recommendations to reduce the energy consumption in healthcare wearable computing application using the energy model.