981 resultados para Fluid-solid Reactions
Resumo:
Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2011
kinetic analysis of ester hydrolysis reactions considering volume and enthalpy changes due to mixing
Resumo:
Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2012
Resumo:
n-Butane, Partial oxidation, Maleic anhydride, electrochemical oxygen pumping, solid electrolyte membrane reactor
Resumo:
Magdeburg, Univ., Fak. für Mathematik, Diss., 2006
Resumo:
Reactive Chromatography, Fixed-Bed Reactor, Heterogeneous, Hydrolysis, Ester, Catalyst, Adsorption, Ion-Exchange Resin
Resumo:
Cross-Flow, Radial Jets Mixing, Temperature Homogenization, Optimization, Combustion Chamber, CFD
Resumo:
Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2011
Resumo:
Magdeburg, Univ., Fak. für Maschinenbau, Diss., 2013
Resumo:
Magdeburg, Univ., Fak. für Mathematik, Diss., 2014
Resumo:
Aus: Soft matter, Vol. 10.2014, H. 25, S. 4487 - 4497
Resumo:
Otto-von Guericke-Universität Magdeburg, Fakultät für Naturwissenschaften, Dissertation, 2016
Resumo:
We are interested in coupled microscopic/macroscopic models describing the evolution of particles dispersed in a fluid. The system consists in a Vlasov-Fokker-Planck equation to describe the microscopic motion of the particles coupled to the Euler equations for a compressible fluid. We investigate dissipative quantities, equilibria and their stability properties and the role of external forces. We also study some asymptotic problems, their equilibria and stability and the derivation of macroscopic two-phase models.
Resumo:
It is well known that the culture media used in the presumptive diagnosis of suspiciuous colonies from plates inoculated with stools for isolation of enteric organisms do not always correctly indicate the major groups of enterobacteria. In an effort to obtain a medium affording more exact indications, several media (1-9) have been tested. Modifications of some of these media have also been tested with the result that a satisfactory modification of Monteverde's medium was finaly selected. This proved to be most satisfactory, affording, as a result of only one inoculation, a complete series of basic indications. The modification involves changes in the formula, in the method of preparation and in the manner of storage. The formulae are: A. Thymol blue indicator: NaOH 0.1/N .............. 34.4 ml; Thymol blue .............. 1.6 g; Water .................... 65.6 ml. B. Andrade's indicator. C. Urea and sugar solution: Urea ..................... 20 g; Lactose ................... 30 g; Sucrose ................... 30 g; Water .................... 100 ml. The mixture (C.) should be warmed slightly in order to dissolve the ingredients rapidly. Sterilise by filtration (Seitz). Keep stock in refrigeratior. The modification of Monteverde's medium is prepared in two parts. Semi-solid part - Peptone (Difco) 2.0 g; NaCl 0.5 g; Agar 0.5 g; Water 100.0 ml. Boil to dissolve the ingredients. Adjust pH with NaOH to 7.3-7.4. Boil again for precipitation. Filter through cotton. Ad indicators "A" 0.3 ml and "B" 1.0 ml. Sterilise in autoclave 115ºC, 15 minutes in amounts not higher than 200 ml. Just before using, add solution "C" asseptically in amounts of 10 ml to 200 ml of the melted semi-solid medium, maintained at 48-50ºC. Solid part - Peptone (Difco) 1.5 g; Trypticase (BBL) 0.5 g; Agar 2.0 g; Water 100,00 ml. Boil to dissolve the ingredients. Adjust pH with NaOH to 7.3-7.4. Boils again. Filter through cotton. Add indicators "A" 0.3 ml and "B" 1.0 ml; ferrous ammonium sulfate 0.02 g; sodiun thiosulfate 0.02 g. Sterilise in autoclave 115ºC, 15 minutes in amounts not higher than 200 ml. Just before using, add solution "C" asseptically in amounts of 10 ml to 200 ml of the melted solid medium, maintained at 48-50ºC. Final medium - The semi-solid part is dispensed first (tubes about 12 x 120 mm) in 2.5 ml amounts and left to harden at room temperature, in vertical position. The solid part is dispensed over the hardened semi-solid one in amounts from 2.0 ml to 2.5 ml and left to harden in slant position, affording a butt of 12 to 15 mm. The tubes of medium should be subjected to a sterility test in the incubator, overnight. Tubes showing spontaneous gas bubbles (air) should then be discarded. The medium should be stored in the incubator (37ºC), for not more than 2 to 4 days. Storage of the tubes in the ice-box produces the absorption of air which is released as bubbles when the tubes are incubated at 37ºC after inoculation. This fact confirmed the observation of ARCHAMBAULT & McCRADY (10) who worked with liquid media and the aplication of their observation was found to be essential to the proper working conditions of this double-layer medium. Inoculation - The inoculation is made by means of a long straight needle, as is usually done on the triple sugar, but the needel should penetrate only to about half of the height of the semi-solid column. Indol detection - After inoculation, a strip of sterelized filter papaer previously moistened with Ehrlich's reagent, is suspended above the surface of the medium, being held between the cotton plug and the tube. Indications given - In addition to providing a mass of organisms on the slant for serological invetigations, the medium gives the following indications: 1. Acid from lactose and/or sucrose (red, of yellowsh with strains which reduce the indicators). 2. Gas from lactose and/or sucrose (bubbles). 3. H[2]S production, observed on the solid part (black). 4. Motility observed on the semi-solid part (tubidity). 5. Urease production, observed on solid and semi-solid parts (blue). 6. Indol production, observed on the strip of filter paper (red or purplish). Indol production is not observed with indol positive strains which rapidly acidify the surface o the slant, and the use of oxalic acid has proved to give less sensitive reaction (11). Reading of results - In most cases overnight incubation is enough; sometimes the reactions appear within only a few hours of incubation, affording a definitive orientation of the diagnosis. With some cultures it is necessary to observe the medium during 48 hours of incubation. A description showing typical differential reaction follows: Salmonella: Color of the medium unchanged, with blackening of the solid part when H[2]S is positive. The slant tends to alkalinity (greenish of bluish). Gas always absent. Indol negative. Motility positive or negative. Shigella: Color of the medium unchanged at the beginning of incubation period, but acquiring a red color when the strain is late lactose/sucrose positive. Slant tending to alkalinity (greenish or purplish). Indol positive or negative. Motility, gas and H[2]S always negative. Proteus: Color of the medium generally changes entirely to blue or sometimes to green (urease positive delayed), with blackening of solid part when H[2]S is positive. Motility positive of negative. Indol positive. Gas positive or negative. The strains which attack rapidly sucrose may give a yellow-greenish color to the medium. Sometimes the intense blue color of the medium renders difficult the reading of the H[2]S production. Escherichiae and Klebsiellae: Color of the medium red or yellow (acid) with great and rapid production of gas. Motility positive or negative. Indol generally impossible to observe. Paracoli: Those lactose of sucrose positive give the same reaction as Esherichia. Those lactose or sucrose negatives give the same reactions as Salmonellae. Sometimes indol positive and H[2]S negative. Pseudomonas: Color of the medium unchanged. The slant tends to alkalinity. It is impossible to observe motility because there is no growth in the bottom. Alkaligenes: Color of the medium unchanged. The slant tends to alkalinity. The medium does not alter the antigenic properties of the strains and with the mass of organisms on the slant we can make the serologic diagnosis. It is admitted that this medium is somewhat more laborious to prepare than others used for similar purposes. Nevertheless it can give informations generally obtained by two or three other media. Its use represents much saving in time, labor and material, and we suggest it for routine laboratory work in which a quick presumptive preliminary grouping of enteric organisms is needed.
Resumo:
The reversals of Mitsuda's reactions induced by BCG have been objected to based on the possiblem interference of other determination causes of the phenomenon: tuberculous primo-infections, communicants of unsuspected leprosy, revearsals due to other causes, such as anti-diphteric and anti-tetanic vaccination, etc. In order to study the problem, we have used Rhesus monkeys (Macaca mulatta), which were reared in isolation, in an attempt to avoid the referred to interferences. Prior to the experiments, all animals were tested and found negative to radiograph, tuberculin and lepromin tests and were then submitted to the application of BCG vaccine (from 1 to 3 days old), in different doses and by different via. At different times, after the application of BCG, they were again submitted to the radiographic, tuberculin and lepromin tests. In the tables I to IV the experiences were summarised. From the experiments, the following conclusions were reached: 1 - From 12 Rhesus that received BCG 11 showed reversals of the Mitsuda reaction (91.7%). 2 - These reverseals took place both in tests effected shortly after BCG (from 6 days to 2 months), and tests effected much later (from 7 to 12 months after BCG). 3 - Some differences were found in the results, according to the dosis and the application via of the BCG. a) - The testicular and peritonela via (0,02g) were the only that determined strong positive Mitsuda's reactions (+++). b) - By oral via, animals that received high dosis (0.6g and 1.2 g), there resulted uniform and regular reversals, even though of low intensity (+); but from those who got small doses (0.2 g.) one showed no reversals in all tests, and the other presented reversals in the 2nd and 3rd tests only, also with low positivity (+). 4) In the 2nd and 3rd Mitsuda's reactions in the same animals, positivity was always precocious (generally within 48 hours), one getting the impression that there occurs a sensibilization of the animal body by the antigen with the repetition of the tests, even though the intensity of the reaction always remains the same. This precocious reaction (Fernandez type) occurs both shortly and long time after the application of the BCG. Its precocity depends not of the antigen only because the first Mitsuda's reaction after the BCG application occurs after some time and seems not influenced by the control lepromin test effected on the Rhesus before the BCG. 5) On the control group, the animals which received a.a.f. bacilli suspensions (Mycobacterium sp.; M. avium, and M. smegmatis), did not show reverseals of the Mitsuda's reaction. Two Rhesus, however, which received dead BCG (120ºC autoclave 1 hour), one intradermically (0.006 g) and the other orally (1.2 g), did both present reversals of the Mitsuda's reaction, with weak positivity (+). In all animals of the control-group, the allergic reactions were found negative. 6) Strong local inflammatory reactions were observed in the Rhesus that had received living BCG by intradermal via, and in the one submitted to multipunctures, there occurred the formation of a large caseous abcess. 7) The allergic tuberculinic and infratuberculinic reactions appeared dissociated from the Mitsuda's reactions: sometimes they are more precocious, occurring before of the lepromin test; on other occasions they disappear, when the Mitsuda's reactions still persist; and finally, they may be absent, when the latter occur, especially after the oral application of the BCG. 8) In Rhesus which received BCG by testicular and peritonela via, in the infratuberculinic test (0.1 ml of total BCG extract), besides the classic answer, which occurs between 48 and 96 hours, one could observe a delayed answer (15 to 20 days), represented by a non-erythematous nodule, which persists for 11-14 days.
Resumo:
Estudi elaborat a partir d’una estada a l’ Ecole Nationale Supérieure de Chimie de Montpellier, França, durant 2006. S’han sintetitzat materials híbrids orgànico-inorgànics mitjançant el procés sol-gel i altres estratègies sintètiques. En alguns casos, s’ha intentat estructurar aquests materials, ja sigui per autoestructuració o per mitjà de tensioactius. Com a catalitzadors de les reaccions d'hidròlisi i policondensació s’han utilitzat àcids, bases i fluorurs. Els materials obtinguts s’han caracteritzat mitjançant diferents tècniques: BET (Brunauer-Emmett-Teller), TEM (microscopia electrònica de transmissió), SEM (microscòpia electrònica de rastreig), raigs X en pols , IR i RMN (ressonància magnètica nuclear) en estat sòlid. Amb aquests materials es pretén preparar catalitzadors heterogenis de Pd per reaccions d’acoblament creuat, i de Ru per reaccions de metàtesi. També s’han sintetitzat sals d'imidazoli amb cadenes hidrocarbonades llargues amb l'objectiu de preparar gels de sílice amb aquestes molècules atrapades dins la matriu inorgànica. Aquests materials s’utilitzaran com a organocatalitzadors i també es prepararan els corresponents catalitzadors de Pd per reaccions de Heck, Suzuki i Sonogashira. Les sals d’imidazoli s’han utilitzat com a tensioactius en la preparació de gels de sílice estructurats. Aquestes molècules han resultat ser cristalls líquids i s’han caracteritzar mitjançant DSC (differential scanning calorimetry), microscopia òptica i raigs X.