976 resultados para Flow function
Resumo:
Dormancy release in seeds of Lolium rigidum Gaud. (annual ryegrass) was investigated in relation to temperature and seed water content. Freshly matured seeds were collected from cropping fields at Wongan Hills and Merredin, Western Australia. Seeds from Wongan Hills were equilibrated to water contents between 6 and 18% dry weight and after-ripened at constant temperatures between 9 and 50degreesC for up to 23 weeks. Wongan Hills and Merredin seeds at water contents between 7 and 17% were also after-ripened in full sun or shade conditions. Dormancy was tested at regular intervals during after-ripening by germinating seeds on agar at 12-h alternating 15degreesC (dark) and 25degreesC (light) periods. Rate of dormancy release for Wongan Hills seeds was a positive linear function of after-ripening temperature above a base temperature (T-b) of 5.4degreesC. A thermal after-ripening time model for dormancy loss accounting for seed moisture in the range 6-18% was developed using germination data for Wongan Hills seeds after-ripened at constant temperatures. The model accurately predicted dormancy release for Wongan Hills seeds after-ripened under naturally fluctuating temperatures. Seeds from Merredin responded similarly but had lower dormancy at collection and a faster rate of dormancy release in seeds below 9% water content.
Resumo:
In order to investigate the effect of material anisotropy on convective instability of three-dimensional fluid-saturated faults, an exact analytical solution for the critical Rayleigh number of three-dimensional convective flow has been obtained. Using this critical Rayleigh number, effects of different permeability ratios and thermal conductivity ratios on convective instability of a vertically oriented three-dimensional fault have been examined in detail. It has been recognized that (1) if the fault material is isotropic in the horizontal direction, the horizontal to vertical permeability ratio has a significant effect on the critical Rayleigh number of the three-dimensional fault system, but the horizontal to vertical thermal conductivity ratio has little influence on the convective instability of the system, and (2) if the fault material is isotropic in the fault plane, the thermal conductivity ratio of the fault normal to plane has a considerable effect on the critical Rayleigh number of the three-dimensional fault system, but the effect of the permeability ratio of the fault normal to plane on the critical Rayleigh number of three-dimensional convective flow is negligible.
Resumo:
We use the finite element method to solve coupled problems between pore-fluid flow and heat transfer in fluid-saturated porous rocks. In particular, we investigate the effects of both the hot pluton intrusion and topographically driven horizontal flow on the distributions of the pore-flow velocity and temperature in large-scale hydrothermal systems. Since general mineralization patterns are strongly dependent on distributions of both the pore-fluid velocity and temperature fields, the modern mineralization theory has been used to predict the general mineralization patterns in several realistic hydrothermal systems. The related numerical results have demonstrated that: (1) The existence of a hot intrusion can cause an increase in the maximum value of the pore-fluid velocity in the hydrothermal system. (2) The permeability of an intruded pluton is one of the sensitive parameters to control the pore-fluid flow, heat transfer and ore body formation in hydrothermal systems. (3) The maximum value of the pore-fluid velocity increases when the bottom temperature of the hydrothermal system is increased. (4) The topographically driven flow has significant effects on the pore-fluid flow, temperature distribution and precipitation pattern of minerals in hydrothermal systems. (5) The size of the computational domain may have some effects on the pore-fluid flow and heat transfer, indicating that the size of a hydrothermal system may affect the pore-fluid flow and heat transfer within the system. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Calcium-activated potassium channels are a large family of potassium channels that are found throughout the central nervous system and in many other cell types. These channels are activated by rises in cytosolic calcium largely in response to calcium influx via voltage-gated calcium channels that open during action potentials. Activation of these potassium channels is involved in the control of a number of physiological processes from the firing properties of neurons to the control of transmitter release. These channels form the target for modulation for a range of neurotransmitters and have been implicated in the pathogenesis of neurological and psychiatric disorders. Here the authors summarize the varieties of calcium-activated potassium channels present in central neurons and their defining molecular and biophysical properties.
Resumo:
In this study we demonstrate a new in-fermenter chemical extraction procedure that degrades the cell wall of Escherichia coli and releases inclusion bodies (IBs) into the fermentation medium. We then prove that cross-flow microfiltration can be used to remove 91% of soluble contaminants from the released IBs. The extraction protocol, based on a combination of Triton X-100, EDTA, and intracellular T7 lysozyme, effectively released most of the intracellular soluble content without solubilising the IBs. Cross-flow microfiltration using a 0.2 mum ceramic membrane successfully recovered the granulocyte macrophagecolony stimulating factor (GM-CSF) IBs with removal of 91% of the soluble contaminants and virtually no loss of IBs to the permeate. The filtration efficiency, in terms of both flux and transmission, was significantly enhanced by infermenter Benzonase(R) digestion of nucleic acids following chemical extraction. Both the extraction and filtration methods exerted their efficacy directly on a crude fermentation broth, eliminating the need for cell recovery and re-suspension in buffer. The processes demonstrated here can all be performed using just a fermenter and a single cross-flow filtration unit, demonstrating a high level of process intensification. Furthermore, there is considerable scope to also use the microfiltration system to subsequently solubilise the IBs, to separate the denatured protein from cell debris, and to refold the protein using diafiltration. In this way refolded protein can potentially be obtained, in a relatively pure state, using only two unit operations. (C) 2004 Wiley Periodicals Inc.
Resumo:
The initiation of graft vs. host disease (GVHD) after stem cell transplantation is dependent on direct antigen presentation by host antigen presenting cells (APC) while the effect of indirect antigen presentation by donor APC is unknown. We have studied the role of indirect antigen presentation in allogenic responses by adding populations of cytokine-expanded donor APC to haematopoietic grafts that would otherwise induce lethal GVHD. Progenipoietin-1 (a synthetic G-CSF/Flt-3 L molecule) and G-CSF expanded myeloid DC, plasmacytoid DC and a novel granulocyte-monocyte precursor population (GM) that differentiate into class IIpos, CD80/CD86pos, CD40neg APC during GVHD. Whereas addition of plasmacytoid and myeloid donor DC augmented GVHD, GM cells induced transplant tolerance via MHC class II restricted generation of IL-10-secreting regulatory T cells. Thus a population of cytokine expanded granulocyte-monocyte precursors function as regulatory antigen presenting cells, suggesting that G-CSF derivatives may have application in disorders characterised by a loss of self-tolerance.
Resumo:
One consistent functional imaging finding from patients with major depression has been abnormality of the anterior cingulate cortex (ACC). Hypoperfusion has been most commonly reported, but some studies suggest relative hyperperfusion is associated with response to somatic treatments. Despite these indications of the possible importance of the ACC in depression there have been relatively few cognitive studies ACC function in patients with major depression. The present study employed a series of reaction time (RT) tasks involving selection with melancholic and nonmelancholic depressed patients, as well as age-matched controls. Fifteen patients with unipolar major depression (7 melancholic, 8 nonmelancholic) and 8 healthy age-matched controls performed a series of response selection tasks (choice RT, spatial Stroop, spatial stimulus-response compatibility (SRC), and a combined Stroop + SRC condition). Reaction time and error data were collected. Melancholic patients were significantly slower than controls on all tasks but were slower than nonmelancholic patients only on the Stroop and Stroop + SRC conditions. Nonmelancholic patients did not differ from the control group on any task. The Stroop task seems crucial in differentiating the two depressive groups, they did not differ on the choice RT or SRC tasks. This may reflect differential task demands, the SRC involved symbolic manipulation that might engage the dorsal ACC and dorsolateral prefrontal cortex (DLPFC) to a greater extent than the, primarily inhibitory, Stroop task which may engage the ventral ACC and orbitofrontal cortex (OFC). This might suggest the melancholic group showed a greater ventral ACC-OFC deficit than the nonmelancholic group, while both groups showed similar dorsal ACC-DLPFC deficit.
Resumo:
This article aims to analyse the introduction of environmental issues in the context of the production function, which has been referred to as the organisational area to lead corporate environmental management. With that purpose, the theoretical references for corporate environmental management and the necessary alterations in production function have been organised to include environmental aspects, especially in terms of product and process development, quality management, and logistics. Considering that this research field still lacks empirical evidence for Brazilian companies, four case studies were conducted using companies located in the country. The environmental management maturity level of those companies tends to follow the rate with which the environmental issue is introduced in production sub-areas, especially in the product development process. However, in most cases we found that the companies had difficulties in structuring the insertion of the environmental dimension in logistics. The final notes point out the distance observed between what is recommended by international literature and the reality of Brazilian companies in the challenge of making the production function environmentally friendly.
Resumo:
Duchenne muscular dystrophy (DMD) is a fatal neuromuscular condition affecting approximately one in 3500 live male births resulting from the lack of the myocyte protein dystrophin. The absence of dystrophin in cardiac myocytes is associated with calcium overload which in turn activates calcium-dependent proteolytic enzymes contributing to congestive heart failure, muscle necrosis and fibrosis. To date, the basis for the calcium overload has not been determined. Since L-type calcium channels are a major mediator of calcium influx we determined their potential contribution to the calcium overload. Male muscular dystrophy (mdx) mice and control C57BL10ScSn (C57) mice aged 12– 16 weeks were used in all experiments. In tissue bath studies, isolated contracting left atria from mdx revealed a reduced potency to the dihydropyridine (DHP) agonist BayK8644 and antagonist nifedipine (P < 0.05). Similarly, radioligand binding studies using the DHP antagonist [3H]-PN 200-110 showed a reduced potency (P < 0.05) in isolated membranes, associated with an increased receptor density (P < 0.05). The increased receptor density was supported by RT-PCR experiments revealing increased RNAfor the DHP receptor. Patch clamp studies revealed the presence of a diltiazem sensitive calcium current that showed delayed inactivation in isolated mdx myocytes (P < 0.01). In conclusion, the increased number of DHP binding sites and the delay in L-type current inactivation may both contribute to increased calcium influx and hence calcium overload in the dystrophin deficient mdx cardiac myocytes.
Resumo:
In insects, exoskeleton (cuticle) formation at each molt cycle includes complex biochemical pathways wherein the laccase enzymes (EC 1.10.3.2) may have a key role. We identified an Amlac2 gene that encodes a laccase2 in the honey bee, Apis mellifera, and investigated its function in exoskeleton differentiation. The Amlac2 gene consists of nine exons resulting in an ORE of 2193 nucleotides. The deduced translation product is a 731 amino acid protein of 81.5 kDa and a pl of 6.05. Amlac2 is highly expressed in the integument of pharate adults, and the expression precedes the onset of cuticle pigmentation and the intensification of sclerotization. In accordance with the temporal sequence of exoskeleton differentiation from anterior to posterior direction, the levels of Amlac2 transcript increase earlier in the thoracic than in the abdominal integument. The gene expression lasts even after the bees emerge from brood cells and begin activities in the nest, but declines after the transition to foraging stage, suggesting that maturation of the exoskeleton is completed at this stage. Post-transcriptional knockdown of Amlac2 gene expression resulted in structural abnormalities in the exoskeleton and drastically affected adult eclosion. By setting a ligature between the thorax and abdomen of early pupae we could delay the increase in hemolymph ecdysteroid levels in the abdomen. This severely impaired the increase in Amlac2 transcript levels and also the differentiation of the abdominal exoskeleton. Taken together, these results indicate that Amlac2 expression is controlled by ecdysteroids and has a critical role in the differentiation of the adult exoskeleton of honey bees. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The thermal characteristics of a colony of Apoica flavissima, an epiponine wasp, were examined. The nest, with a diameter of slightly less than 30 cm, was built on a twig of an orange tree. The temperature of the roof surface fluctuated greatly, ranging between 19.1 and 41.5 degrees C. However, the temperature in the central cell was kept constant at around 27 degrees C throughout a day. Although heavy rain pelted the nest roof in the morning, the central cell maintained temperatures higher than 25 degrees C. On the contrary, after all immature and adult wasps were removed the temperature in the nest fluctuated considerably. The presence of immature individuals and adult wasps densely covering the under surface of the comb seemed to function as an effective insulator. The smaller temperature fluctuation in the central cell than on the roof surface, when the nest was in the empty state, suggests that the thick spongy tissue of the roof made from curled plant leaf hairs serves as an insulator to prevent the conduction of solar heat into the cells and the outward flow of heat generated in cells, especially at night.
Resumo:
The electrochemical treatment of a synthetic tannery wastewater prepared with 30 compounds used in animal skin processing was studied. Electrolyses were performed in a one-compartment flow cell at a current density of 20 mA cm(-2), using a dimensionally stable anode (DSA (R)) of composition Ti/Ir(0.10)Sn(0.90)O(2) as the working electrode. Effects of chloride concentration and presence of sulfate were evaluated. Variation in the concentration of phenolic compounds as a function of electrolysis time revealed a first-order exponential decay; faster phenol removals were obtained with increasing chloride concentration in the wastewater. Lower phenol removals were obtained in the presence of sulfate. Higher chloride concentrations led to a faster decrease in total organic carbon (TOC), chemical oxygen demand (COD), and absorbance values at 228 nm. Faster wastewater color removal, higher current efficiency and lower energy consumption were also obtained. This electrochemical treatment was also able to reduce the wastewater toxicity for Daphnia similis. (C) 2008 Elsevier Ltd. All rights reserved.