995 resultados para Florida Coastal Everglades
Resumo:
This poster presentation from the May 2015 Florida Library Association Conference, along with the Everglades Explorer discovery portal at http://ee.fiu.edu, demonstrates how traditional bibliographic and curatorial principles can be applied to: 1) selection, cross-walking and aggregation of metadata linking end-users to wide-spread digital resources from multiple silos; 2) harvesting of select PDFs, HTML and media for web archiving and access; 3) selection of CMS domains, sub-domains and folders for targeted searching using an API. Choosing content for this discovery portal is comparable to past scholarly practice of creating and publishing subject bibliographies, except metadata and data are housed in relational databases. This new and yet traditional capacity coincides with: Growth of bibliographic utilities (MarcEdit); Evolution of open-source discovery systems (eXtensible Catalog); Development of target-capable web crawling and archiving systems (Archive-it); and specialized search APIs (Google). At the same time, historical and technical changes – specifically the increasing fluidity and re-purposing of syndicated metadata – make this possible. It equally stems from the expansion of freely accessible digitized legacy and born-digital resources. Innovation principles helped frame the process by which the thematic Everglades discovery portal was created at Florida International University. The path -- to providing for more effective searching and co-location of digital scientific, educational and historical material related to the Everglades -- is contextualized through five concepts found within Dyer and Christensen’s “The Innovator’s DNA: Mastering the five skills of disruptive innovators (2011). The project also aligns with Ranganathan’s Laws of Library Science, especially the 4th Law -- to "save the time of the user.”
Resumo:
Fisheries independent data on relatively unstudied nekton communities were used to explore the efficacy of new tools to be applied in the investigation of shallow coastal coral reef habitats. These data obtained through concurrent diver visual and acoustic surveys provided descriptions of spatial community distribution patterns across seasonal temporal scales in a previously undocumented region. Fish density estimates by both diver and acoustic methodologies showed a general agreement in ability to detect distributional patterns across reef tracts, though magnitude of density estimates were different. Fish communities in southeastern Florida showed significant trends in spatial distribution and seasonal abundance, with higher estimates of biomass obtained in the dry season. Further, community composition shifted across reef tracts and seasons as a function of the movements of several key reef species.
Resumo:
South Florida has been subject to considerable changes during the last 100 years. This study provides a detailed survey of the presence, concentration levels, and spatial distribution of organic and inorganic contaminants in sediment samples collected within the coastal environments of southwest Florida. It evaluates the potential contributions and effects of the urban and agricultural development to the pollution loading of the estuarine sediments. And it also provides information regarding chronology of contamination at impacted sites. Copper was found to be the most critical contaminant among the trace metals. 12% of the samples exceeded the Threshold Effects Level (TEL). None of organic contaminants measured exceeded the Probable Effects Level (PEL) criteria. Total PAHs concentrations exceeded the TEL criteria in 6% of the samples. The evaluation for the chronology of contamination showed a significant increase with time of every contaminant analyzed. Fluorescence spectroscopy proves to be a good method for fast screening PAHs.
Resumo:
This dissertation combines three separate studies that measure coastal change using airborne laser data. The initial study develops a method for measuring subaerial and subaqueous volume change incrementally alongshore, and compares those measurements to shoreline change in order to quantify their relationship in Palm Beach County, Florida. A poor correlation (R2 = 0.39) was found between shoreline and volume change before the hurricane season in the northern section of Palm Beach County because of beach nourishment and inlet dynamics. However, a relatively high R2 value of 0.78 in the southern section of Palm Beach County was found due to little disturbance from tidal inlets and coastal engineering projects. The shoreline and volume change caused by the 2004 hurricane season was poorly correlated with R2 values of 0.02 and 0.42 for the north and south sections, respectively. The second study uses airborne laser data to investigate if there is a significant relationship between shoreline migration before and after Hurricane Ivan near Panama City, Florida. In addition, the relationship between shoreline change and subaerial volume was quantified and a new method for quantifying subaqueous sediment change was developed. No significant spatial relationship was found between shoreline migration before and after the hurricane. Utilization of a single coefficient to represent all relationships between shoreline and subaerial volume change was found to be problematic due to the spatial variability in the linear relationship. Differences in bathymetric data show only a small portion of sediment was transported beyond the active zone and most sediment remained within the active zone despite the occurrence of a hurricane. The third study uses airborne laser bathymetry to measure the offshore limit of change, and compares that location with calculated depth of closures and subaqueous geomorphology. There appears to be strong geologic control of the depth of closure in Broward and Miami-Dade Counties. North of Hillsboro Inlet, hydrodynamics control the geomorphology which in turn indicates the location of the depth of closure.
Resumo:
Current water management practices in South Florida have negatively impacted many species inhabiting Florida Bay. Variable and high salinity has been identified as a key stressor in these estuaries. The comprehensive Everglades Restoration Plan (CERP) includes water redistribution projects that will restore natural freshwater flows to northeastern Florida Bay. My studies focused on the following central theme and hypotheses: Biological performance measures (i.e., growth, reproduction, survival), behavior (i.e., habitat preference and locomotor behavior) and diversity of estuarine fish will be controlled by changes in salinity and water quality that will occur as a result of the restoration of freshwater flow to the bay. A series of acute and subchronic physiological toxicity studies were conducted to determine the effects of salinity changes on the life stages (embryo/larval, juvenile, adult) and fecundity of four native estuarine fish (Cyprinodon variegatus, Floridichthys carpio, Poecilia latipinna, and Gambusia holbrooki). Fishe were exposed to a range of salinity concentrations (freshwater to hypersaline) based on salinity profiles in the study areas. Growth (length, weight) and survival were measured. Salinity trials included both rapid and gradual change events. Results show negative effects of acute, abrupt salinity changes on fish survival, development and reproductive success as a result of salinity stress. Other studies targeted reproduction and critical embryo-larval/neonate development as key areas for detecting long-term population effects of salinity change in Florida Bay. Adults of C. variegatus and P. latipinna were also examined for behavioral responses to pulsed salinity changes. These responses include changes in swimming performance, locomotor behavior and zone preference. Finally, an ecological risk assessment was conducted for adverse salinity conditions in northeastern Florida Bay. Using the U.S. EPA's framework, the risk to estuarine fish species diversity was assessed against regional salinity profiles from a 17-year database. Based on the risk assessment, target salinity profiles for these areas are recommended for managers.
Resumo:
Eleocharis cellulosa is a dominant macrophyte in Everglades wet prairie communities. The development of the shoot system in the genus has been described as sympodial but with an unusual adnation of the horizontal and vertical shoots. The growth pattern of E. cellulosa was studied from field collected plants and plants grown in the greenhouse. Plants were extracted and measurements of horizontal and vertical shoot were taken. Dissections, paraffin sectioning and SEM's were used to examine shoot structure in early developmental stages. E. cellulosa was transplanted from the field to the greenhouse and different levels of Nitrogen and Phosphorus were added to determine how it responded phenotypically. Dissections and microscopy showed that growth of the vertical shoots of E. cellulosa is sympodial, while growth of the horizontal shoots is mixed, beginning monopodially then transforming to sympodial growth. Additions of nutrients did not have any effect on the morphology of E. cellulosa.
Resumo:
Rodents are often involved at several stages of trophic dynamics. Consequently they often play crucial roles in the structure and function of many complex ecological systems. This study sought to address the lack of baseline data concerning rodents in tropical areas, and south Florida in particular. Live trapping took place in the four major habitat types of the Long Pine Key area of Everglades National Park over the course of one year. I compared population structures and abundance of murid rodents in the four habitat types, and tested multiple weather variables for their effectiveness as predictors of rodent abundance. I found the Long Pine Key area to be depauperate in terms of species diversity. Each of the four species of rodent encountered favored a particular habitat type. The density of the understory vegetation and the avoidance of avian predators in particular appear to be the most important factors in the distribution and abundance of rodents in the Long Pine Key area of Everglades National Park.
Resumo:
The current study describes the composition and activity of the snake community of the Pa-hay-okee wetlands of Everglades National Park. The study was conducted from January 1987 to January 1989. Sixteen species were observed, with Thamnophis sauritus, Thamnophis sirtalis, Nerodia fasciata pictiventris, and Agkistrodon piscivorus representing 90.2% of the total sample. The seasonal distribution and activity of the snakes were closely related to fluctuations in the water table. Most activity occurred in the winter months as snakes migrated west following the drying water edge of Shark River Slough. Seventy percent of all snakes observed during this study were either injured or dead on the road. Over 50% of annual mortality occurred during migration. The impact that road mortality is having on the local snake community cannot be ignored. Management options are provided to minimize loss. A comparison is made to the snake community of the Long Pine Key Region of Everglades National Park.
Resumo:
Variations in trace element abundances with depth in soils and sediments may be due to natural processes or reflect anthropogenic influences. The depth related variations of five major elements (Fe, Si, Al, Ca and Mg), seventeen trace elements (Mn, Cr, Ti, P, Ni, Ba, Sc, Sr, Sb, Zn, Pb, Cd, Co, V, Be, Cu and Y) and volatile loss patterns were examined for sediment cores from five sites in South Florida (Lake Okeechobee, SFWMD Water Conservation area 3B, F.I.U., the Everglades and Chekika State Recreation Area). Principal component analysis of the chemical data combined with microscopic examination of the soils reveal that depth-related variations can be explained by varying proportions of three natural soil constituents and one anthropogenic component. The results can be used as a geochemical baseline for human influence on South Florida soils.
Resumo:
The Greater Everglades system imparts vital ecosystem services (ES) to South Florida residents including high quality drinking water supplies and a habitat for threatened and endangered species. As a result of the altered Everglades system and regional dynamics, restoration may either improve the provision of these services or impose a tradeoff between enhanced environmental goods and services and competing societal demands. The current study aims at understanding public preferences for restoration and generating willingness to pay (WTP) values for restored ES through the implementation of a discrete choice experiment. A previous study (Milon et al., 1999) generated WTP values amongst Floridians of up to $3.42 -$4.07 billion for full restoration over a 10-year period. We have collected data from 2,905 respondents taken from two samples who participated in an online survey designed to elicit the WTP values for selected ecological and social attributes included in the earlier study (Milon et al. 1999). We estimate that the Florida general public is willing to pay up to $854.1- $954.1 million over 10 years to avoid restrictions on their water usage and up to $90.8- $183.7 million over 10 years to restore the hydrological flow within the Water Conservation Area.
Resumo:
The Florida Everglades has a long history of anthropogenic changes which have impacted the quantity and quality of water entering the system. Since the construction of Tamiami Trail in the 1920's, overland flow to the Florida Everglades has decreased significantly, impacting ecosystems from the wetlands to the estuary. The MIKE Marsh Model of Everglades National Park (M3ENP) is a numerical model, which simulates Everglades National Park (ENP) hydrology using MIKE SHE/MIKE 11software. This model has been developed to determine the parameters that effect Everglades hydrology and understand the impact of specific flow changes on the hydrology of the system. As part of the effort to return flows to the historical levels, several changes to the existing water management infrastructure have been implemented or are in the design phase. Bridge construction scenarios were programed into the M3ENP model to review the effect of these structural changes and evaluate the potential impacts on water levels and hydroperiods in the receiving Northeast Shark Slough ecosystem. These scenarios have shown critical water level increases in an area which has been in decline due to low water levels. Results from this work may help guide future decisions for restoration designs. Excess phosphorus entering Everglades National Park in South Florida may promote the growth of more phosphorus-opportunistic species and alter the food chain from the bottom up. Two phosphorus transport methods were developed into the M3ENP hydrodynamic model to determine the factors affecting phosphorus transport and the impact of bridge construction on water quality. Results showed that while phosphorus concentrations in surface waters decreased overall, some areas within ENP interior may experience an increase in phosphorus loading which the addition of bridges to Tamiami Trail. Finally, phosphorus data and modeled water level data was used to evaluate the spectral response of Everglades vegetation to increasing phosphorus availability using Landsat imagery.
Resumo:
The Everglades R-EMAP project for year 2005 produced large quantities of data collected at 232 sampling sites. Data collection and analysis is an on-going long-term activity conducted by scientists of different disciplines at irregular intervals of several years. The data sets collected for 2005 include bio-geo-chemical (including mercury and hydro period), fish, invertebrate, periphyton, and plant data. Each sampling site is associated with a location, a description of the site to provide a general overview and photographs to provide a pictorial impression. The Geographic Information Systems and Remote Sensing Center(GISRSC) at Florida International University (FIU) has designed and implemented an enterprise database for long-term storage of the project�s data in a central repository, providing the framework of data storage for the continuity of future sampling campaigns and allowing integration of new sample data as it becomes available. In addition GISRSC provides this interactive web application for easy, quick and effective retrieval and visualization of that data.
Resumo:
Abstract: Heavily used and highly valuable, the Florida Reef is one of the world's most threatened ecosystems. Stakeholders from a densely urbanized coastal region in proximity to the reef system recognize its degradation, but their comprehension of climate change and commitment to pay for sustainable management and research funding have been opaque. With an emphasis on recreational anglers, residential stakeholders were surveyed online about their marine activities, perceptions of resources and threats, and willingness to pay (WTP) for dedicated coral reef research funding in Florida. The majority of stakeholders are wealthy, well educated, and politically independent. Supermajorities favored the two scenarios of taxation for a Florida Coral Reef Research Fund, and the scenario with matching federal funds earned higher support. In regression analyses, several factors emerged as significant contributors to stakeholders’ preferences, and the four recurring factors in extended models were prioritizing the environment over the economy, donating to environmental causes, concern about coral reefs, and concern about climate change, with the latter indicating a recent shift of opinion. Status in terms of income and education were found insignificant, and surprisingly income was negatively correlated with WTP. Perceptions through lenses of environmental and emotional attachments appear to overwhelm conventional status-based factors. Applied statewide, the first scenario's extrapolated WTP (based on a sales tax rate of 2.9%) would generate $675 million annually, and the extrapolated WTP under the second scenario, with matching federal funds (based on a sales tax rate of 3.0%) would generate $1.4 billion. Keywords: willingness to pay, coral reef research, taxation, climate change, stakeholder, perceptions, Florida Reef, recreational fishing, anglers
Resumo:
The purpose of this research was to investigate the effects of wetland restoration on the water balance, flushing time, and water chemistry of southern Taylor Slough, a major water way in Everglades National Park. Water balance and flushing time equations were calculated on a monthly time step from 2001 – 2011. Water chemistry of major ions and nutrients were analyzed and correlated with water flushing times. Results showed that evapotranspiration followed by water volume had the greatest influence on flushing time. The flushing times varied between 3 and 78 days, with longer times observed between October and December, and the shorter times between March and May. Ion concentrations at the coastal areas decreased with increased flushing times. Increased surface water inflow that resulted from restoration projects and water management changes were productive in the rainy season and should result in increased flushing times and decreased ion concentrations in Taylor Slough.
Resumo:
The study analyzed hydro-climatic and land use sensitivities of stormwater runoff and quality in the complex coastal urban watershed of Miami River Basin, Florida by developing a Storm Water Management Model (EPA SWMM 5). Regression-based empirical models were also developed to explain stream water quality in relation to internal (land uses and hydrology) and external (upstream contribution, seawater) sources and drivers in six highly urbanized canal basins of Southeast Florida. Stormwater runoff and quality were most sensitive to rainfall, imperviousness, and conversion of open lands/parks to residential, commercial and industrial areas. In-stream dissolved oxygen and total phosphorus in the watersheds were dictated by internal stressors while external stressors were dominant for total nitrogen and specific conductance. The research findings and tools will be useful for proactive monitoring and management of storm runoff and urban stream water quality under the changing climate and environment in South Florida and around the world.