857 resultados para Finite-precision computation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses the architectural design, implementation and associated simulated peformance results of a possible receiver solution fir a multiband Ultra-Wideband (UWB) receiver. The paper concentrates on the tradeoff between the soft-bit width and numerical precision requirements for the receiver versus performance. The required numerical precision results obtained in this paper can be used by baseband designers of cost effective UWB systems using Systein-on-Chip (SoC), FPGA and ASIC technology solutions biased toward the competitive consumer electronics market(1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce transreal analysis as a generalisation of real analysis. We find that the generalisation of the real exponential and logarithmic functions is well defined for all transreal numbers. Hence, we derive well defined values of all transreal powers of all non-negative transreal numbers. In particular, we find a well defined value for zero to the power of zero. We also note that the computation of products via the transreal logarithm is identical to the transreal product, as expected. We then generalise all of the common, real, trigonometric functions to transreal functions and show that transreal (sin x)/x is well defined everywhere. This raises the possibility that transreal analysis is total, in other words, that every function and every limit is everywhere well defined. If so, transreal analysis should be an adequate mathematical basis for analysing the perspex machine - a theoretical, super-Turing machine that operates on a total geometry. We go on to dispel all of the standard counter "proofs" that purport to show that division by zero is impossible. This is done simply by carrying the proof through in transreal arithmetic or transreal analysis. We find that either the supposed counter proof has no content or else that it supports the contention that division by zero is possible. The supposed counter proofs rely on extending the standard systems in arbitrary and inconsistent ways and then showing, tautologously, that the chosen extensions are not consistent. This shows only that the chosen extensions are inconsistent and does not bear on the question of whether division by zero is logically possible. By contrast, transreal arithmetic is total and consistent so it defeats any possible "straw man" argument. Finally, we show how to arrange that a function has finite or else unmeasurable (nullity) values, but no infinite values. This arithmetical arrangement might prove useful in mathematical physics because it outlaws naked singularities in all equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the 1990s the Message Passing Interface Forum defined MPI bindings for Fortran, C, and C++. With the success of MPI these relatively conservative languages have continued to dominate in the parallel computing community. There are compelling arguments in favour of more modern languages like Java. These include portability, better runtime error checking, modularity, and multi-threading. But these arguments have not converted many HPC programmers, perhaps due to the scarcity of full-scale scientific Java codes, and the lack of evidence for performance competitive with C or Fortran. This paper tries to redress this situation by porting two scientific applications to Java. Both of these applications are parallelized using our thread-safe Java messaging system—MPJ Express. The first application is the Gadget-2 code, which is a massively parallel structure formation code for cosmological simulations. The second application uses the finite-domain time-difference method for simulations in the area of computational electromagnetics. We evaluate and compare the performance of the Java and C versions of these two scientific applications, and demonstrate that the Java codes can achieve performance comparable with legacy applications written in conventional HPC languages. Copyright © 2009 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses the requirements on the numerical precision for a practical Multiband Ultra-Wideband (UWB) consumer electronic solution. To this end we first present the possibilities that UWB has to offer to the consumer electronics market and the possible range of devices. We then show the performance of a model of the UWB baseband system implemented using floating point precision. Then, by simulation we find the minimal numerical precision required to maintain floating-point performance for each of the specific data types and signals present in the UWB baseband. Finally, we present a full description of the numerical requirements for both the transmit and receive components of the UWB baseband. The numerical precision results obtained in this paper can then be used by baseband designers to implement cost effective UWB systems using System-on-Chip (SoC), FPGA and ASIC technology solutions biased toward the competitive consumer electronics market(1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An efficient finite difference scheme is presented for the inviscid terms of the three-dimensional, compressible flow equations for chemical non-equilibrium gases. This scheme represents an extension and an improvement of one proposed by the author, and includes operator splitting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a finite difference scheme, with the TVD (total variation diminishing) property, for scalar conservation laws. The scheme applies to non-uniform meshes, allowing for variable mesh spacing, and is without upstream weighting. When applied to systems of conservation laws, no scalar decomposition is required, nor are any artificial tuning parameters, and this leads to an efficient, robust algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A finite difference scheme is presented for the inviscid terms of the equations of compressible fluid dynamics with general non-equilibrium chemistry and internal energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A finite difference scheme is presented for the solution of the two-dimensional equations of steady, supersonic, compressible flow of real gases. The scheme incorparates numerical characteristic decomposition, is shock-capturing by design and incorporates space-marching as a result of the assumption that the flow is wholly supersonic in at least one space dimension. Results are shown for problems involving oblique hydraulic jumps and reflection from a wall.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the statistical mechanics of ideal polymer chains next to a hard wall. The principal quantity of interest, from which all monomer densities can be calculated, is the partition function, G N(z) , for a chain of N discrete monomers with one end fixed a distance z from the wall. It is well accepted that in the limit of infinite N , G N(z) satisfies the diffusion equation with the Dirichlet boundary condition, G N(0) = 0 , unless the wall possesses a sufficient attraction, in which case the Robin boundary condition, G N(0) = - x G N ′(0) , applies with a positive coefficient, x . Here we investigate the leading N -1/2 correction, D G N(z) . Prior to the adsorption threshold, D G N(z) is found to involve two distinct parts: a Gaussian correction (for z <~Unknown control sequence '\lesssim' aN 1/2 with a model-dependent amplitude, A , and a proximal-layer correction (for z <~Unknown control sequence '\lesssim' a described by a model-dependent function, B(z).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years nonpolynomial finite element methods have received increasing attention for the efficient solution of wave problems. As with their close cousin the method of particular solutions, high efficiency comes from using solutions to the Helmholtz equation as basis functions. We present and analyze such a method for the scattering of two-dimensional scalar waves from a polygonal domain that achieves exponential convergence purely by increasing the number of basis functions in each element. Key ingredients are the use of basis functions that capture the singularities at corners and the representation of the scattered field towards infinity by a combination of fundamental solutions. The solution is obtained by minimizing a least-squares functional, which we discretize in such a way that a matrix least-squares problem is obtained. We give computable exponential bounds on the rate of convergence of the least-squares functional that are in very good agreement with the observed numerical convergence. Challenging numerical examples, including a nonconvex polygon with several corner singularities, and a cavity domain, are solved to around 10 digits of accuracy with a few seconds of CPU time. The examples are implemented concisely with MPSpack, a MATLAB toolbox for wave computations with nonpolynomial basis functions, developed by the authors. A code example is included.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study weak solutions for a class of free-boundary problems which includes as a special case the classical problem of travelling gravity waves on water of finite depth. We show that such problems are equivalent to problems in fixed domains and study the regularity of their solutions. We also prove that in very general situations the free boundary is necessarily the graph of a function.