884 resultados para Fibra óptica


Relevância:

20.00% 20.00%

Publicador:

Resumo:

La neuromielitis óptica (NMO) o enfermedad de Devic es un trastorno autoinmune, inflamatorio y desmielinizante, que afecta principalmente al nervio óptico y la médula espinal. El cuadro clínico está caracterizado por dolor de tipo neuropático, patrón de pérdida de la visión y aparición de fenómenos visuales positivos, como fosfenos inducidos por movimiento. En lesiones activas se ha demostrado que hay amplificación del dolor, esencialmente por acción excitatoria por niveles excesivos de glutamato. En las lesiones establecidas, la pérdida de los astrocitos representa la generalidad del cuadro. El dolor en la enfermedad de Devic es más frecuente y grave que en la esclerosis múltiple, y tiene un grave impacto en la vida cotidiana. Hay literatura que refiere resultados aislados con carbamazepina. En este caso clínico, se ve claramente el efecto analgésico con disminución de los espasmos dolorosos de carbamazepina y neuromoduladores + opioides fuertes en combinación con psicoterapia para disminuir niveles de ansiedad y depresión y lograr un manejo integral del dolor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to the occurrence of diseases in the use of structural reinforcements in composites, with presentation of concrete blanket detachment, has been identified the need to evaluate the performance of concrete reinforced with glass fiber. This study aims to evaluate these concretes by means of testing methodologies, using concrete with low resistance with structural reinforcement for confinement by preimpregnated glass fiber and traditional fiberglass blanket. The first stage of work was the development of methodologies for analysis, opting for four types, such as the acoustic survey, strength to compressive, the pull-off and ultrasound. Next, tests were carried out using the four selected methodologies in 30 of proof-of-specimens by 5x10 cm, 15 were reinforced with the traditional fiberglass blanket with 5specimens exposed to test a marine environment of marine coastline of Natal-RN and 15 were reinforced with a pre-impregnated glass fiber blanket, as well as 5specimens exposed to a test environment of the marine coastline of Natal-RN. After conducting the acoustic survey, it has been verified a lack of delaminating and air bubbles in the samples, confirming the absence of gross shortcomings in the implementation of the ribs both the traditional fiberglass blanket and in the preimpregnated fiber glass blanket. After carrying out methods of pull-off and compressive strengthening test it was observed that the reinforced proof-bodies with pre-impregnated glass blanket showed maximum stresses higher than the traditional fiberglass blanket; consequently a greater grip with the formation of a smaller area of . fracture, unlike traditional glass mat, which showed lower maximum stresses, with a greater area of fracture. It was also found that the traditional fiberglass blanket presented detachment of blanket-concrete interface, unlike the pre-impregnated fiberglass blanket, which showed a better grip on the blanket-concrete interface. In the trial of ultrasound there was no presence of cracks in the blanket-concrete interface, yielding to both blankets good compactness of the concrete. At the end of this work, they were developed and proposed two methods of testing for evaluation of reinforced concrete structures with composites, for standardization, the acoustic survey and pull-off

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aims to compare the thermal performance of tiles made from recycled material (waste packaging cardboard with aluminized film) with the tiles of fiber and bitumen, fiber cement and red ceramic with the aim of verifying the suitability of tile to be used in hot and humid climate of low latitude. The samples were selected according to the availability from Natal - RN market, as they are sold to the consumers. The methodology was based on studies that used experimental apparatus composed of thermal chambers heated by banks of incandescent bulbs, to analyze the thermal performance of materials. The tiles in the study were submitted to analysis of thermal performance, thermophysical properties and absorptance, using chambers of thermal performance, measuring the thermophysical properties and portable spectrometer, respectively. Comparative analysis of thermal performance between two samples of the recycled material with dimple sizes and different amounts of aluminum were made, in order to verify, if these characteristics had some interference on the thermal performance of them; the results showed no significant performance differences between the samples. The data obtained in chambers of thermal performance and confirmed by statistical analysis, showed, that the tile of recycled material have similar thermal performance to the tile of fiber cement. In addition to these tests was carried out the automatic monitoring of a building covered with tiles of recycled material, to verify its thermal performance in a real situation. The results showed that recycled shingles must be used with technical criteria similar to those used for fiber cement tiles, with regard to the heat gain into the building. Within these criteria should be taken into account local characteristics, especially in regions with hot and humid climate, and its use must be associated, according to the literature, to elements of thermal insulation and use of passive techniques such as vented attics, ceilings and right foot higher

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research and development of wind turbine blades are essential to keep pace with worldwide growth in the renewable energy sector. Although currently blades are typically produced using glass fiber reinforced composite materials, the tendency for larger size blades, particularly for offshore applications, has increased the interest on carbon fiber reinforced composites because of the potential for increased stiffness and weight reduction. In this study a model of blade designed for large generators (5 MW) was studied on a small scale. A numerical simulation was performed to determine the aerodynamic loading using a Computational Fluid Dynamics (CFD) software. Two blades were then designed and manufactured using epoxy matrix composites: one reinforced with glass fibers and the other with carbon fibers. For the structural calculations, maximum stress failure criterion was adopted. The blades were manufactured by Vacuum Assisted Resin Transfer Molding (VARTM), typical for this type of component. A weight comparison of the two blades was performed and the weight of the carbon fiber blade was approximately 45% of the weight of the fiberglass reinforced blade. Static bending tests were carried out on the blades for various percentages of the design load and deflections measurements were compared with the values obtained from finite element simulations. A good agreement was observed between the measured and calculated deflections. In summary, the results of this study confirm that the low density combined with high mechanical properties of carbon fibers are particularly attractive for the production of large size wind turbine blades

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of new materials to fill the demand of technological advances is a challenge for many researchers around the world. Strategies such as making blends and composites are promising alternatives to produce materials with different properties from those found in conventional polymers. The objective of this study is to evaluate the effect of adding the copolymer poly(ethylene methyl acrylate) (EMA) and cotton linter fibers (LB) on the properties of recycled poly(ethylene terephthalate) (PETrec) by the development of PETrec/EMA blend and PETrec/EMA/LB blend composite. In order to improve the properties of these materials were added as compatibilizers: Ethylene - methyl acrylate - glycidyl methacrylate terpolymer (EMA-GMA) and maleic anhydride grafted polyethylene (PE-g-MA). The samples were produced using a single screw extruder and then injection molded. The obtained materials were characterized by thermogravimetry (TG), melt flow index (MFI) mensurements, torque rheometry, pycnometry to determinate the density, tensile testing and scanning electron microscopy (SEM). The rheological results showed that the addition of the EMA copolymer increased the viscosity of the blend and LB reduces the viscosity of the blend composite. SEM analysis of the binary blend showed poor interfacial adhesion between the PETrec matrix and the EMA dispersed phase, as well as the blend composite of PETrec/EMA/LB also observed low adhesion with the LB fiber. The tensile tests showed that the increase of EMA percentage decreased the tensile strength and the Young s modulus, also lower EMA percentage samples had increased the elongation at break. The blend composite showed an increase in the tensile strength and in the Young`s modulus, and a decrease in the elongation at break. The blend formulations with lower EMA percentages showed better mechanical properties that agree with the particle size analysis which showed that these formulations presented a smaller diameter of the dispersed phase. The blend composite mechanical tests showed that this material is stronger and stiffer than the blend PETrec/EMA, whose properties have been reduced due to the presence of EMA rubbery phase. The use of EMA-GMA was effective in reducing the particle size of the EMA dispersed phase in the PETrec/EMA blend and PE-g-MA showed evidences of reaction with LB and physical mixture with the EMA

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se realiza un estudio de tipo clínico-descriptivo con el objeto de determinar la presencia de pigmentos bilirrubinoides y la madurez pulmonar, comprado el Test de Clements con la edad gestacional y el estado clínico del recién nacido. Se tomó a cincuenta pacientes embarazadas entre 37 y 41 semanas de gestación, sin factores de riesgo y sus recién nacidos, atendidos mediante cesárea o parto vaginal, en el Centro Obstétrico del Hospital Vicente Corral Moscoso de la ciudad de Cuenca en 1999. Se realizaron las determinaciones basados en los parámetros recomendados a nivel internacional concluyendo que: 1 En las embarazadas a término de la gestación, la determinación de la presencia de pigmentos bilirrubinoides en líquido ammniótico corresponde a la zona 1 de la gráfica de Liley, interpretada como exenta de riesgo para los recién nacidos, de acuerdo con los parámetros que se registran en la literatura médica actual. 2. La prueba de Clements positiva guarda estrecha relación con la madurez del recién nacido expresada por Capurro y con una adecuada función respiratoria expresada por un puntaje normal de Silverman en todos los casos. 3. En caso de usarse la prueba de Clements, es la prueba de un tubo, suficiente para valorar la madurez pulmonar por su alta confiabilidad y bajo costo. 4. Por lo tanto los autores recomendamos que se incluya la aplicación de estas dos pruebas, que son de fácil realización, como parte del protocolo de atención materno-infantil en el Centro Obstétrico del Hospital Vicente Corral Moscoso

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A partir de la pasada década comenzaron a tener auge, en el ámbito de la matemática educativa, las ideas de Vigotsky y su teoría psicológica; sin embargo, aún entre los docentes e investigadores latinoamericanos se conoce poco sobre los principales presupuestos de su teoría psicológica y lo más importante, de sus implicaciones para la enseñanza de las matemáticas. El enfoque histórico-cultural ha servido durante muchos años de referente teórico en las investigaciones educativas en Cuba, influidas por la formación de profesionales cubanos de alto nivel en la desaparecida Unión Soviética y enriquecidas por ese laboratorio permanente que es la práctica educacional cubana. Este trabajo tiene como objetivo divulgar entre los profesores e investigadores de la comunidad de educadores matemáticos latinoamericanos, los principales presupuestos teóricos de esta escuela psicológica, significándolos en el contexto de la enseñanza y aprendizaje de las matemáticas, aunque con énfasis especial en el nivel superior, a tono con el nivel de enseñanza donde el autor desarrolla sus investigaciones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis (Optometra). -- Universidad de La Salle, Facultad de Ciencias de La Salud. Programa de Optometria, 2014

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis (Optometra). -- Universidad de La Salle, Facultad de Ciencias de La Salud. Programa de Optometria, 2014

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This master thesis aims at developing a new methodology for thermochemical degradation of dry coconut fiber (dp = 0.25mm) using laboratory rotating cylinder reactor with the goal of producing bio-oil. The biomass was characterized by infrared spectroscopy with Fourier transform FTIR, thermogravimetric analysis TG, with evaluation of activation energy the in non-isothermal regime with heating rates of 5 and 10 °C/min, differential themogravimetric analysis DTG, sweeping electron microscopy SEM, higher heating value - HHV, immediate analysis such as evaluated all the amounts of its main constituents, i.e., lignin, cellulose and hemicelluloses. In the process, it was evaluated: reaction temperature (450, 500 and 550oC), carrier gas flow rate (50 and 100 cm³/min) and spin speed (20 and 25 Hz) to condensate the bio-oil. The feed rate of biomass (540 g/h), the rotation of the rotating cylinder (33.7 rpm) and reaction time (30 33 min) were constant. The phases obtained from the process of pyrolysis of dry coconut fiber were bio-oil, char and the gas phase non-condensed. A macroscopic mass balance was applied based on the weight of each phase to evaluate their yield. The highest yield of 20% was obtained from the following conditions: temperature of 500oC, inert gas flow of 100 cm³/min and spin speed of 20 Hz. In that condition, the yield in char was 24.3%, non-condensable gas phase was 37.6% and losses of approximately 22.6%. The following physicochemical properties: density, viscosity, pH, higher heating value, char content, FTIR and CHN analysis were evaluated. The sample obtained in the best operational condition was subjected to a qualitative chromatographic analysis aiming to know the constituents of the produced bio-oil, which were: phenol followed by sirigol, acetovanilona and vinyl guaiacol. The solid phase (char) was characterized through an immediate analysis (evaluation of moisture, volatiles, ashes and fixed carbon), higher heating value and FTIR. The non-condensing gas phase presented as main constituents CO2, CO and H2. The results were compared to the ones mentioned by the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently, the oil industry is the biggest cause of environmental pollution. The objective was to reduce the concentration of copper and chromium in the water produced by the oil industry. It was used as adsorbent natural sisal fiber Agave sp treated with nitric acid and sodium hydroxide. All vegetable fibers have physical and morphological properties that enablies the adsorption of pollutants. The basic composition of sisal is cellulose, hemicellulose and lignin. The features are typically found in the characterization of vegetable fibers, except the surface area that was practically zero. In the first stage of adsorption, it was evaluated the effect of temperature and time skeeking to optimize the execution of the factorial design. The results showed that the most feasible fiber was the one treated with acid in five hours (30°C). The second phase was a factorial design, using acid and five hours, this time was it determined in the first phase. The tests were conducted following the experimental design and the results were analyzed by statistical methods in order to optimize the main parameters that influence the process: pH, concentration (mol / L) and fiber mass/ metal solution volume. The volume / mass ratio factor showed significant interference in the adsorption process of chromium and copper. The results obtained after optimization showed that the highest percentages of extraction (98%) were obtained on the following operating conditions: pH: 5-6, Concentration: 100 ppm and mass/ volume: 1 gram of fiber/50mL solution. The results showed that the adsorption process was efficient to remove chromium and copper using sisal fibers, however, requiring further studies to optimize the process.