997 resultados para Fetal renal maturation
Resumo:
Purpose: Sirolimus (SRL) has been used to replace calcineurin inhibitors (CNI) for various indications including CNI-induced toxicity. The aim of this study was to evaluate the efficacy and safety of switching from CNI to SRL in stable renal transplant recipients (RTR) with low grade proteinuria (<1 g/24 h). Methods and materials: Between 2001 and 2007, 41 patients (20 females, 21 males; mean age 47 ± 13) were switched after a median time post-transplantation of 73.5 months (range 0.2-273.2 months). Indications for switch were CNI nephrotoxicity (39%), thrombotic micro-angiopathy (14.6%), post-transplantation cancer (24.4%), CNI neurotoxicity (7.4%), or others (14.6%). Mean follow-up after SRL switch was 23.8±16.3 months. Mean SRL dosage and through levels were 2.4 ± 1.1 mg/day and 8 ± 2.2 ug/l respectively. Immunosuppressive regiments were SRL + mycophenolate mofetil (MMF) (31.7%), SRL + MMF + prednisone (36.58%), SRL + prednisone (19.51%), SRL + Azathioprine (9.75%), or SRL alone (2.43%). Results: Mean creatinine decreased from 164 to 143 μmol/l (p <0.03), mean estimated glomerular filtration rate (eGFR) increased significantly from 50.13 to 55.01 ml/minute (p <0.00001), mean systolic and diastolic blood pressure decreased from 138 to 132 mm Hg (p <0.03) and from 83 to78 mm Hg (p <0.01), but mean proteinuria increased from 0.21 to 0.63 g/24 h (p <0.001). While mean total cholesterolemia didn't increased significantly from 5.09 to 5.56 mmol/l (p = 0.06). The main complications after SRL switch were dermatitis (19.5%), urinary tract infections (24.4%), ankle edema (13.3%), and transient oral ulcers (20%). Acute rejection after the switch occurred in 7.3% of patients (n = 3), and 2 acute rejections were successfully treated with corticosteroids and 1 did not respond to treatment (not related to switch). SRL had to be discontinued in 17% of patients (2 nephrotic syndromes, 2 severe edema, 1 acute rejection, 1 thrombotic micro-angiopathy, and 1 fever). Conclusion: In conclusion, we found that switching from CNI to SRL in stable RTR was safe and associated with a significant improvement of renal function and blood pressure. Known side-effects of SRL led to drug discontinuation in less than 20% of patients and the acute rejection rate was 7.3%. This experience underlines the importance of patient selection before switching to SRL, in particular regarding preswitch proteinuria.
Resumo:
OBJECTIVE: To investigate the association of renal impairment on functional outcome and complications in stroke patients treated with IV thrombolysis (IVT). METHODS: In this observational study, we compared the estimated glomerular filtration rate (GFR) with poor 3-month outcome (modified Rankin Scale scores 3-6), death, and symptomatic intracranial hemorrhage (sICH) based on the criteria of the European Cooperative Acute Stroke Study II trial. Unadjusted and adjusted odds ratios (ORs) with 95% confidence intervals (CIs) were calculated. Patients without IVT treatment served as a comparison group. RESULTS: Among 4,780 IVT-treated patients, 1,217 (25.5%) had a low GFR (<60 mL/min/1.73 m(2)). A GFR decrease by 10 mL/min/1.73 m(2) increased the risk of poor outcome (OR [95% CI]): (ORunadjusted 1.20 [1.17-1.24]; ORadjusted 1.05 [1.01-1.09]), death (ORunadjusted 1.33 [1.28-1.38]; ORadjusted 1.18 [1.11-1.249]), and sICH (ORunadjusted 1.15 [1.01-1.22]; ORadjusted 1.11 [1.04-1.20]). Low GFR was independently associated with poor 3-month outcome (ORadjusted 1.32 [1.10-1.58]), death (ORadjusted 1.73 [1.39-2.14]), and sICH (ORadjusted 1.64 [1.21-2.23]) compared with normal GFR (60-120 mL/min/1.73 m(2)). Low GFR (ORadjusted 1.64 [1.21-2.23]) and stroke severity (ORadjusted 1.05 [1.03-1.07]) independently determined sICH. Compared with patients who did not receive IVT, treatment with IVT in patients with low GFR was associated with poor outcome (ORadjusted 1.79 [1.41-2.25]), and with favorable outcome in those with normal GFR (ORadjusted 0.77 [0.63-0.94]). CONCLUSION: Renal function significantly modified outcome and complication rates in IVT-treated stroke patients. Lower GFR might be a better risk indicator for sICH than age. A decrease of GFR by 10 mL/min/1.73 m(2) seems to have a similar impact on the risk of death or sICH as a 1-point-higher NIH Stroke Scale score measuring stroke severity.
Resumo:
Projecte de recerca elaborat a partir d’una estada a la University of California, Estats Units entre febrer i maig de 2007. L’arginina és un component de les proteïnes i juga un paper important en respostes inflamatòries. S’ha demostrat que l’agmatina pot inhibir el creixement mitjançant la supressió de la biosíntesi i el transport de poliamines. Actualment s’està avaluant el mecanisme de l’aturada d’aquest creixement. S’està estudiant també l’impacte en l’apoptosi i la senescència, ja que els models apoptòtics impliquen un descens de poliamines com a factor comú i causal d’apoptosi. En la diabetis el ronyó creix i l’índex de filtració glomerular esdevé supranormal. Aquest creixement renal precoç és considerat una resposta compensatòria a l’increment de la càrrega hiperfiltrada. Nosaltres considerem que aquesta hiperfiltració glomerular diabètica es deguda a esdeveniments que ocorren en el creixement del túbul proximal, i en aquest creixement hi poden estar involucrades les poliamines.
Resumo:
The activity of the thiazide-sensitive Na(+)/Cl(-) cotransporter (NCC) and of the amiloride-sensitive epithelial Na(+) channel (ENaC) is pivotal for blood pressure regulation. NCC is responsible for Na(+) reabsorption in the distal convoluted tubule (DCT) of the nephron, while ENaC reabsorbs the filtered Na(+) in the late DCT and in the cortical collecting ducts (CCD) providing the final renal adjustment to Na(+) balance. Here, we aim to highlight the recent advances made using transgenic mouse models towards the understanding of the regulation of NCC and ENaC function relevant to the control of sodium balance and blood pressure. We thus like to pave the way for common mechanisms regulating these two sodium-transporting proteins and their potential implication in structural remodeling of the nephron segments and Na(+) and Cl(-) reabsorption.
Resumo:
OBJECTIVES: To evaluate the current effectiveness of routine prenatal ultrasound screening in detecting gastroschisis and omphalocele in Europe. DESIGN: Data were collected by 19 congenital malformation registries from 11 European countries. The registries used the same epidemiological methodology and registration system. The study period was 30 months (July 1st 1996-December 31st 1998) and the total number of monitored pregnancies was 690,123. RESULTS: The sensitivity of antenatal ultrasound examination in detecting omphalocele was 75% (103/137). The mean gestational age at the first detection of an anomaly was 18 +/- 6.0 gestational weeks. The overall prenatal detection rate for gastroschisis was 83% (88/106) and the mean gestational age at diagnosis was 20 +/- 7.0 gestational weeks. Detection rates varied between registries from 25 to 100% for omphalocele and from 18 to 100% for gastroschisis. Of the 137 cases of omphalocele less than half of the cases were live births (n = 56; 41%). A high number of cases resulted in fetal deaths (n = 30; 22%) and termination of pregnancy (n = 51; 37%). Of the 106 cases of gastroschisis there were 62 (59%) live births, 13 (12%) ended with intrauterine fetal death and 31 (29%) had the pregnancies terminated. CONCLUSIONS: There is significant regional variation in detection rates in Europe reflecting different policies, equipment and the operators' experience. A high proportion of abdominal wall defects is associated with concurrent malformations, syndromes or chromosomal abnormalities, stressing the need for the introduction of repeated detailed ultrasound examination as a standard procedure. There is still a relatively high rate of elective termination of pregnancies for both defects, even in isolated cases which generally have a good prognosis after surgical repair.
Resumo:
Targeting mTOR (mammalian target of rapamycin) is an effective approach in the treatment of advanced RCC (renal cell carcinoma). Rapamycin-like drugs (rapalogues) have shown clinical activities and have been approved for the treatment of RCC. Recently, with the development of ATP-competitive inhibitors of mTOR, therapies targeting mTOR have entered a new era. Here, we discuss the biological relevance of blocking mTOR in RCC and review the mechanisms of action of rapalogues in RCC. We also advance some perspectives on the use of ATP-competitive inhibitors of mTOR in RCC.
Resumo:
Experimentally renal tissue hypoxia appears to play an important role in the pathogenesis of chronic kidney disease (CKD) and arterial hypertension (AHT). In this study we measured renal tissue oxygenation and its determinants in humans using blood oxygenation level-dependent magnetic resonance imaging (BOLD-MRI) under standardized hydration conditions. Four coronal slices were selected, and a multi gradient echo sequence was used to acquire T2* weighted images. The mean cortical and medullary R2* values ( = 1/T2*) were calculated before and after administration of IV furosemide, a low R2* indicating a high tissue oxygenation. We studied 195 subjects (95 CKD, 58 treated AHT, and 42 healthy controls). Mean cortical R2 and medullary R2* were not significantly different between the groups at baseline. In stimulated conditions (furosemide injection), the decrease in R2* was significantly blunted in patients with CKD and AHT. In multivariate linear regression analyses, neither cortical nor medullary R2* were associated with eGFR or blood pressure, but cortical R2* correlated positively with male gender, blood glucose and uric acid levels. In conclusion, our data show that kidney oxygenation is tightly regulated in CKD and hypertensive patients at rest. However, the metabolic response to acute changes in sodium transport is altered in CKD and in AHT, despite preserved renal function in the latter group. This suggests the presence of early renal metabolic alterations in hypertension. The correlations between cortical R2* values, male gender, glycemia and uric acid levels suggest that these factors interfere with the regulation of renal tissue oxygenation.
Resumo:
Age is the main clinical determinant of large artery stiffness. Central arteries stiffen progressively with age, whereas peripheral muscular arteries change little with age. A number of clinical studies have analyzed the effects of age on aortic stiffness. Increase of central artery stiffness with age is responsible for earlier wave reflections and changes in pressure wave contours. The stiffening of aorta and other central arteries is a potential risk factor for increased cardiovascular morbidity and mortality. Arterial stiffening with aging is accompanied by an elevation in systolic blood pressure (BP) and pulse pressure (PP). Although arterial stiffening with age is a common situation, it has now been confirmed that older subjects with increased arterial stiffness and elevated PP have higher cardiovascular morbidity and mortality. Increase in aortic stiffness with age occurs gradually and continuously, similarly for men and women. Cross-sectional studies have shown that aortic and carotid stiffness (evaluated by the pulse wave velocity) increase with age by approximately 10% to 15% during a period of 10 years. Women always have 5% to 10% lower stiffness than men of the same age. Although large artery stiffness increases with age independently of the presence of cardiovascular risk factors or other associated conditions, the extent of this increase may depend on several environmental or genetic factors. Hypertension may increase arterial stiffness, especially in older subjects. Among other cardiovascular risk factors, diabetes type 1 and 2 accelerates arterial stiffness, whereas the role of dyslipidemia and tobacco smoking is unclear. Arterial stiffness is also present in several cardiovascular and renal diseases. Patients with heart failure, end stage renal disease, and those with atherosclerotic lesions often develop central artery stiffness. Decreased carotid distensibility, increased arterial thickness, and presence of calcifications and plaques often coexist in the same subject. However, relationships between these three alterations of the arterial wall remain to be explored.
Resumo:
A cardiac-triggered free-breathing three-dimensional (3D) balanced fast field-echo projection renal magnetic resonance (MR) angiographic sequence was investigated for in-stent lumen visualization of a dedicated metallic renal artery stent. Fourteen prototype stents were deployed in the renal arteries of six pigs (in two pigs, three stents were deployed). Projection renal MR angiography was compared with standard contrast material-enhanced 3D breath-hold MR angiography. Artifact-free in-stent lumen visualization was achieved with both projection MR angiography and contrast-enhanced MR angiography. These promising results warrant further studies for visualization of in-stent restenosis.
Resumo:
BACKGROUND: Depending on its magnitude, lower body negative pressure (LBNP) has been shown to induce a progressive activation of neurohormonal, renal tubular, and renal hemodynamic responses, thereby mimicking the renal responses observed in clinical conditions characterized by a low effective arterial volume such as congestive heart failure. Our objective was to evaluate the impact of angiotensin II receptor blockade with candesartan on the renal hemodynamic and urinary excretory responses to a progressive orthostatic stress in normal subjects. METHODS: Twenty healthy men were submitted to three levels of LBNP (0, -10, and -20 mbar or 0, -7.5, and -15 mm Hg) for 1 hour according to a crossover design with a minimum of 2 days between each level of LBNP. Ten subjects were randomly allocated to receive a placebo and ten others were treated with candesartan 16 mg orally for 10 days before and during the three levels of LBNP. Systemic and renal hemodynamics, renal sodium excretions, and the hormonal response were measured hourly before, during, and for 2 hours after LBNP. RESULTS: During placebo, LBNP induced no change in systemic and renal hemodynamics, but sodium excretion decreased dose dependently with higher levels of LBNP. At -20 mbar, cumulative 3-hour sodium balance was negative at -2.3 +/- 2.3 mmol (mean +/- SEM). With candesartan, mean blood pressure decreased (76 +/- 1 mm Hg vs. 83 +/- 3 mm Hg, candesartan vs. placebo, P < 0.05) and renal plasma flow increased (858 +/- 52 mL/min vs. 639 +/- 36 mL/min, candesartan vs. placebo, P < 0.05). Glomerular filtration rate (GFR) was not significantly higher with candesartan (127 +/- 7 mL/min in placebo vs. 144 +/- 12 mL/min in candesartan). No significant decrease in sodium and water excretion was found during LBNP in candesartan-treated subjects. At -20 mbar, the 3-hour cumulative sodium excretion was + 4.6 +/- 1.4 mmol in the candesartan group (P= 0.02 vs. placebo). CONCLUSION: Selective blockade of angiotensin II type 1 (AT1) receptors with candesartan increases renal blood flow and prevents the antinatriuresis during sustained lower body negative pressure despite a modest decrease in blood pressure. These results thus provide interesting insights into potential benefits of AT1 receptor blockade in sodium-retaining states such as congestive heart failure.
Resumo:
BACKGROUND: Contrast-enhanced ultrasonography (CEUS) is a novel imaging technique that is safe and applicable on the bedside. Recent developments seem to enable CEUS to quantify organ perfusion. We performed an exploratory study to determine the ability of CEUS to detect changes in renal perfusion and to correlate them with effective renal plasma flow. METHODS: CEUS with destruction-refilling sequences was studied in 10 healthy subjects, at baseline and during infusion of angiotensin II (AngII) at low (1 ng/kg/min) and high dose (3 ng/kg/min) and 1 h after oral captopril (50 mg). Perfusion index (PI) was obtained and compared with the effective renal plasma flow (ERPF) obtained by parallel para-aminohippurate (PAH) clearance. RESULTS: Median PI decreased from 188.6 (baseline) to 100.4 with low-dose AngII (-47%; P < 0.02) and to 66.1 with high-dose AngII (-65%; P < 0.01) but increased to 254.7 with captopril (+35%; P > 0.2). These changes parallelled those observed with ERPF, which changed from a median of 672.1 mL/min (baseline) to 572.3 (low-dose AngII, -15%, P < 0.05) and to 427.2 (high-dose AngII, -36%, P < 0.001) and finally 697.1 (captopril, +4%, P < 0.02). CONCLUSIONS: This study demonstrates that CEUS is able to detect changes in human renal cortical microcirculation as induced by AngII infusion and/or captopril administration. The changes in perfusion indices parallel those in ERPF as obtained by PAH clearance.
Resumo:
Impaired renal function was observed in sixteen Aotus nancymai 25 and 3 months following infection with the Uganda Palo Alto strain of Plasmodium falciparum. Decrease were noted in the clearance of endogenous creatinine, creatinine excretion, and urine volume while increases were observed in serum urea nitrogen, urine protein, urine potassium, fractional excretion of phosphorus and potassium, and activities of urinary enzymes. The results were suggestive of glomerulonephropathy and chronic renal disease.
Resumo:
The expression of Ia-like antigen (Ia) has been studied in 55 cases of acute myeloid leukaemia (AML) in correlation with the expression of both Sudan Black (SB) and naphthol AS-D chloroacetate esterase (NCAE) stains. Operationally the AML cases were divided into three groups using only NCAE expression on the leukaemic cells: the first group with early maturation stage (MS1) consisted of 30 cases with less than 10% NCAE positive cells (SB: 15-100%): the MS2 group of 14 cases with 10-70% NCAE positive cells (SB: 65-100%) and the MS3 group of 11 cases with 70-100% NCAE positive cells (SB: 89-100%). Ia expression was determined by complement-dependent cytotoxicity, immunofluorescence and immunoperoxidase methods. A similar high percentage (80%) of patients from both group MS1 and MS2 expressed Ia on the surface of 32-100% of the cells. Furthermore, individual comparison of all cases from these two groups showed no correlation between Ia, NCAE and SB expression. Only in the 11 cases from the MS3 group, which included nine cases of promyelocytic leukaemias, was there a correlation between very low expression of Ia antigen with the high NCAE expression. Thus, for AML with a low degree of differentiation the expression of Ia seems to be independent of conventional cytochemical markers of cell maturation.
Resumo:
The endothelin receptor antagonist avosentan may cause fluid overload at doses of 25 and 50 mg, but the actual mechanisms of this effect are unclear. We conducted a placebo-controlled study in 23 healthy subjects to assess the renal effects of avosentan and the dose dependency of these effects. Oral avosentan was administered once daily for 8 days at doses of 0.5, 1.5, 5, and 50 mg. The drug induced a dose-dependent median increase in body weight, most pronounced at 50 mg (0.8 kg on day 8). Avosentan did not affect renal hemodynamics or plasma electrolytes. A dose-dependent median reduction in the fractional renal excretion of sodium was found (up to 8.7% at avosentan 50 mg); this reduction was paralleled by a dose-related increase in proximal sodium reabsorption. It is suggested that avosentan dose-dependently induces sodium retention by the kidney, mainly through proximal tubular effects. The potential clinical benefits of avosentan should therefore be investigated at doses of <or= 5 mg.