999 resultados para Festivals de films


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oriented Strontium Ferrite films with the c axis orientation were deposited with varying oxygen partial pressure on Al2O3(0001) substrate using Pulsed Laser Deposition technique. The angle dependent magnetic hysteresis, remanent coercivity, and temperature dependent coercivity had been employed to understand the magnetization reversal of these films. It was found that the Strontium Ferrite thin film grown at lower (higher) oxygen partial pressure shows Stoner-Wohlfarth type (Kondorsky like) reversal. The relative importance of pinning and nucleation processes during magnetization reversal is used to explain the type of the magnetization reversal with different oxygen partial pressure during growth. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ge2Sb2Te5 (GST) is well known for its phase change properties and applications in memory and data storage. Efforts are being made to improve its thermal stability and transition between amorphous and crystalline phases. Various elements are doped to GST to improve these properties. In this work, Se has been doped to GST to study its effect on phase change properties. Amorphous GST film crystallized in to rock salt (NaCl) type structure at 150 degrees C and then transformed to hexagonal structure at 250 degrees C. Interestingly, Se doped GST ((GST)(0.9)Se-0.1) film crystallized directly into hexagonal phase and the intermediate phase of NaCl is not observed. The crystallization temperature (T-c) of (GST)(0.9)Se-0.1 is around 200 degrees C, which is 50 degrees C higher than the T-c of GST. For (GST)(0.9)Se-0.1, the threshold switching occurs at about 4.5V which is higher than GST (3 V). Band gap (E-opt) values of as deposited films are calculated from Tauc plot which are 0.63 eV for GST and 0.66 eV for (GST)(0.9)Se-0.1. The E-opt decreases for the films annealed at higher temperatures. The increased T-c, E-opt, the contrast in resistance and the direct transition to hexagonal phase may improve the data readability and thermal stability in the Se doped GST film. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chalcogenide glasses are interesting materials for their infrared transmitting properties and photo-induced effects. This paper reports the influence of light on the optical properties of Sb10S40Se50 thin films. The amorphous nature and chemical composition of the deposited film was studied by X-ray diffraction and energy dispersive X-ray analysis (EDAX). The optical constants, i.e., refractive index, extinction coefficient, and optical band gap as well as film thickness are determined from the measured transmission spectra using the Swanepoel method. The dispersion of the refractive index is discussed in terms of the single-oscillator Wemple-DiDomenico model. The dispersion energy parameter was found to be less for the laser-irradiated film, which indicates the laser-irradiated film is more microstructurally disordered as compared to the as-prepared film. It is observed that laser-irradiation of the films leads to decrease in optical band gap (photo-darkening) while increase in refractive index. The decrease in the optical band gap is explained on the basis of change in nature of films due to chemical disorderness and the increase in refractive index may be due to the densification of films with improved grain structure because of microstructural disorderness in the films. The optical changes are supported by X-ray photoelectron spectroscopy data. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A low-cost fabrication process for forming conductive copper lines on paper is presented. An office inkjet printer was used to deposit desired patterns of silver nitrate and tannic acid solutions sequentially on paper. Silver nitrate was instantaneously reduced in situ on paper by tannic acid at room temperature to form silver nanoparticles, which acted as catalysts for the subsequent electroless deposition of copper. The copper films were 1.8 mu m thick, and the sheet resistance of the copper film on paper was 9 Omega/square. A dual monopole ultrawide band antenna was fabricated on paper and its performance was equivalent to that of a similar antenna fabricated on a copper-film covered Kapton substrate using conventional lithographic processes. The paper-based conductive copper films fabricated using the facile process presented herein will aid the development of low-cost flexible circuits and sensors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The temperature dependent electrical properties of the dropcasted Cu2SnS3 films have been measured in the temperature range 140 K to 317 K. The log I versus root V plot shows two regions. The region at lower bias is due to electrode limited Schottky emission and the higher bias region is due to bulk limited Poole Frenkel emission. The ideality factor is calculated from the ln I versus V plot for different temperatures fitted with the thermionic emission model and is found to vary from 6.05 eV to 12.23 eV. This large value is attributed to the presence of defects or amorphous layer at the Ag / Cu2SnS3 interface. From the Richardson's plot the Richardson's constant and the barrier height were calculated. Owing to the inhomogeneity in the barrier heights, the Richardson's constant and the barrier height were also calculated from the modified Richardson's plot. The I-V-T curves were also fitted using the thermionic field emission model. The barrier heights were found to be higher than those calculated using thermionic emission model. From the fit of the I-V-T curves to the field emission model, field emission was seen to dominate in the low temperature range of 140 K to 177 K. The temperature dependent current graphs show two regions of different mechanisms. The log I versus 1000/T plot gives activation energies E-a1 = 0.367095 - 0.257682 eV and E-a2 = 0.038416 - 0.042452 eV. The log ( I/T-2) versus 1000/T graph gives trap depths Phi(o1) = 0.314159 - 0.204752 eV and Phi(o2) = 0.007425- 0.011163 eV. With increasing voltage the activation energy E-a1 and the trap depth Phi(o1) decrease. From the ln (IT1/ 2) versus 1/T-1/ 4 graph, the low temperature region is due to variable range hopping mechanism and the high temperature region is due to thermionic emission. (C) 2014 Author(s).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semiconducting Cu3BiS3 (CBS) thin films were deposited by co-evaporation of Cu, Bi elemental metallic precursors, with in situ sulphurisation, using a quartz effusion cell. Cu3BiS3 thin films were structurally characterized by XRD and FE-SEM. The chemical bonding of the ions was examined by XPS. As deposited films were demonstrated for metal-semiconductor-metal near IR photodectection under lamp and laser illuminations. The photo current amplified to three orders and two orders of magnitude upon the IR lamp and 60 m W cm(-2) 1064 nm IR laser illuminations, respectively. Larger grains, made up of nano needle bunches aided the transport of carriers. Transport properties were explained based on the trap assisted space charge conduction mechanism. Steady state detector parameters like responsivity varied from 1.04 AW(-1) at 60 m Wcm(-2) to 0.22 AW(-1) at 20 m Wcm(-2). Detector sensitivity of 295 was found to be promising and further could be tuned for better responsivity and efficiency in utilization of near infra-red photodetector. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, mesoporous silica-cyclic olefin copolymer nanocomposite films were fabricated by solution casting. With an increase in silica loading, the stiffness of the matrix increased. The nanocomposite film shows increased strain to failure with moisture after aging by matrix plasticization. The storage modulus and loss factor for samples with silica content show better results compared with pristine polymer, as indicated by dynamic mechanical analysis. The interaction between filler-polymer chain exhibit hydrophobicity compared to the neat polymer. Water absorption studies at room temperature and near the T-g of the polymer (similar to 64 degrees C) were carried out. The nanocomposites up to 4 wt% filler reduces the water diffusion by forming hydrogen and chemical bonding. The result by calcium degradation test method for moisture permeability and Schottky structured organic device encapsulation under weathering condition confirms the effective reinforcement effect of silica particles in the matrix. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports optical, photo-acoustic and electrical switching investigations of GeS2 amorphous thin films of different thicknesses, deposited on glass substrates in vacuum. The Tauc parameter (B (1/2)) and Urbach energy (E (U)) have been determined from the transmittance spectra, to understand the changes in structural disorder; it is found that B (1/2) increases whereas E (U) decreases as the thickness of the films increases. Based on the results, it is suggested that bond re-arrangement, i.e. transformation from homopolar bonds to heteropolar bonds, takes place with increase in thickness. The thermal diffusivity values of GeS2 thin films also show the presence of a chemically ordered network in the GeS2 thin films. Further, it is found that these films exhibit memory-type electrical switching. The observed variation in the switching voltages has been understood on the basis of increase in chemical order.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the systematic comparative study of highly c-axis oriented and crystalline piezoelectric ZnO thin films deposited on four different flexible substrates for vibration sensing application. The flexible substrates employed for present experimental study were namely a metal alloy (Phynox), metal (aluminum), polyimide (Kapton), and polyester (Mylar). ZnO thin films were deposited by an RF reactive magnetron sputtering technique. ZnO thin films of similar thicknesses of 700 +/- 30 nm were deposited on four different flexible substrates to have proper comparative studies. The crystallinity, surface morphology, chemical composition, and roughness of ZnO thin films were evaluated by respective material characterization techniques. The transverse piezoelectric coefficient (d(31)) value for assessing the piezoelectric property of ZnO thin films on different flexible substrates was measured by a four-point bending method. ZnO thin films deposited on Phynox alloy substrate showed relatively better material characterization results and a higher piezoelectric d(31) coefficient value as compared to ZnO films on metal and polymer substrates. In order to experimentally verify the above observations, vibration sensing studies were performed. As expected, the ZnO thin film deposited on Phynox alloy substrate showed better vibration sensing performance. It has generated the highest peak to peak output voltage amplitude of 256 mV as compared to that of aluminum (224 mV), Kapton (144 mV), and Mylar (46 mV). Therefore, metal alloy flexible substrate proves to be a more suitable, advantageous, and versatile choice for integrating ZnO thin films as compared to metal and polymer flexible substrates for vibration sensing applications. The present experimental study is extremely important and helpful for the selection of a suitable flexible substrate for various applications in the field of sensor and actuator technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functionalized cenosphere in PVB composite films were fabricated by melt processing. The composites show higher tensile strength with lower failure strain with increased filler ratio in the matrix. Fractographic images of the samples and DMA studies indicate brittle failure of the matrix. Moisture permeation and water contact angle studies reveal improved hydrophobicity of the matrix, while the factor of surface roughness increases the wettability at higher filler content. Schottky-structured devices encapsulated with functionalized cenosphere indicate enhanced resistance to moisture and increased life time for the devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alumina thin films were deposited on titanium (Ti) and fused quartz by both direct and reactive pulsed rf magnetron sputtering techniques. X-ray diffraction, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy and atomic force microscopy were utilized to study the phases and surface morphology of the films. The as-deposited alumina thin films were amorphous. However, after annealing at 500 degrees C in vacuum, the crystalline peaks corresponding to the Theta (0), Delta (8) and Chi ()) alumina phases were obtained. The optical transmittance and reflectance as well as IR emittanc,e data were also evaluated for the thin films. The transmittance, e.g., (similar to 90%) of the bare quartz substrate was not changed even when the alumina thin films were deposited for an hour. However, further increase in deposition time (e.g., 7 h) of the alumina thin films showed only a marginal decrease (e.g., similar to 5%) in average transmittance of the bare quartz substrate. The direct and indirect optical band gaps and extinction coefficient of the alumina films were estimated from the transmittance spectra. The IR emittance of the Ti substrate (e.g., similar to 16%) was almost constant after depositing alumina thin films for an hour. Further increase in deposition time showed only a marginal increase (e.g., similar to 9%) in IR emittance value. Therefore, it is proposed that the alumina films developed in the present work can act as a protective cover for the Ti substrate while retaining the thermo-optical properties of the same. The nanohardness and Young's modulus of the alumina thin films were evaluated by the novel nanoindentation technique. The nanohardness was measured as similar to 6 GPa. Further, Young's modulus was evaluated as similar to 116 GPa. The magnitudes of the nanomechanical properties of the thin films were a little smaller than those reported in the literature. This was linked to the lack of crystalline phases in the as-deposited alumina thin films. (C) 2014 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here, we present the results of temperature dependent dielectric studies on chemical solution processed Zr-doped BiFeO3 (BFO) thin films deposited on Pt/Si substrates. We find that in contrast to the undoped BFO films, Zr doping at Fe-site suppresses the low frequency dielectric relaxation originating from the grain boundaries, attributed to the increased dipolar rigidity due to stronger Zr-O bonds. Temperature dependent dc conductivity obtained from impedance and modulus analyses shows two distinct conduction processes occurring inside the grains. At temperature below similar to 423K, conductivity is nearly temperature independent, while in the high temperature regime (above similar to 423K), conduction is governed by the long range movement of oxygen vacancies with an activation energy of similar to 1eV. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Application of high electric-field between two points in a thin metallic film results in liquefaction and subsequent flow of the liquid-film from one electrode to another in a radially symmetric fashion. Here, we report the transition of the flow kinetics driven by the liquid film thickness varying from 3 to 100 nm. The mechanism of the flow behavior is observed to be independent of the film thickness; however, the kinetics of the flow depends on the film thickness and the applied voltage. An analytical model, incorporating viscosity and varying electrical resistivity with film thickness, is developed to explain the experimental observations. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flexible poly(vinylidene chloride-co-vinyl chloride)/TiO2 nanocomposite films were fabricated and their dielectric properties were studied. The structural characterization of the composites was carried out using various spectroscopic and electron microscopic techniques. From the thermal analysis of the composites, an improvement in the thermal properties was observed for the composites, as compared to the neat polymer. An increase in the DC conductivity was also observed in the composites, which was due to the tunneling of charge carriers. Furthermore, it was observed that the optimal loading of titania in the matrix was required, above which the properties of the composites showed deterioration. The study of the dielectric properties of the composites supports their use in microelectronic devices as separator in charge storage devices and in transistors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the effect of post- deposition annealing on the composition and electrical properties of alumina (Al2O3) thin films. Al2O3 were deposited on n-type Si < 100 >. substrates by dc reactive magnetron sputtering. The films were subjected to post- deposition annealing at 623, 823 and 1023 K in vacuum. X-ray photoelectron spectroscopy results revealed that the composition improved with post- deposition annealing, and the film annealed at 1023 K became stoichiometric with an O/Al atomic ratio of 1.49. Al/Al2O3/Si metal-oxide-semiconductor (MOS) structures were then fabricated, and a correlation between the dielectric constant epsilon(r) and interface charge density Q(i) with annealing conditions were studied. The dielectric constant of the Al2O3 thin films increased to 9.8 with post- deposition annealing matching the bulk value, whereas the oxide charge density decreased to 3.11 x 10(11) cm(-2.) Studies on current-voltage IV characteristics indicated ohmic and Schottky type of conduction at lower electric fields (<0.16 MV cm(-1)) and space charge limited conduction at higher electric fields.