843 resultados para Feature grouping


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined the effects on extinction of grouping by collinearity of edges and grouping by alignment of internal axes of shapes, in a patient (GK) with simultanagnosia following bilateral parietal brain damage. GK’s visual extinction was reduced when items (equilateral triangles and angles) could be grouped by base alignment (i.e., collinearity) or by axis alignment, relative to a condition in which items were ungrouped. These grouping effects disappeared when inter-item spacing was increased, though factors such as display symmetry remained constant. Overall, the results suggest that, under some conditions, grouping by alignment of axes of symmetry can have an equal beneficial effect on visual extinction as edge-based grouping; thus, in the extinguished field, there is derivation of axis-based representations from the contours present.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel biosensing system based on a micromachined rectangular silicon membrane is proposed and investigated in this paper. A distributive sensing scheme is designed to monitor the dynamics of the sensing structure. An artificial neural network is used to process the measured data and to identify cell presence and density. Without specifying any particular bio-application, the investigation is mainly concentrated on the performance testing of this kind of biosensor as a general biosensing platform. The biosensing experiments on the microfabricated membranes involve seeding different cell densities onto the sensing surface of membrane, and measuring the corresponding dynamics information of each tested silicon membrane in the form of a series of frequency response functions (FRFs). All of those experiments are carried out in cell culture medium to simulate a practical working environment. The EA.hy 926 endothelial cell lines are chosen in this paper for the bio-experiments. The EA.hy 926 endothelial cell lines represent a particular class of biological particles that have irregular shapes, non-uniform density and uncertain growth behaviour, which are difficult to monitor using the traditional biosensors. The final predicted results reveal that the methodology of a neural-network based algorithm to perform the feature identification of cells from distributive sensory measurement has great potential in biosensing applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes a series of experiments investigating both sequential and concurrent auditory grouping in implant listeners. Some grouping cues used by normal-hearing listeners should also be available to implant listeners, while others (e.g. fundamental frequency) are unlikely to be useful. As poor spectral resolution may also limit implant listeners’ performance, the spread of excitation in the cochlea was assessed using Neural Response Telemetry (NRT) and the results were related to those of the perceptual tasks. Experiment 1 evaluated sequential segregation of alternating tone sequences; no effect of rate or evidence of perceptual ambiguity was found, suggesting that automatic stream segregation had not occurred. Experiment 2 was an electrode pitch-ranking task; some relationship was found between pitch-ranking judgements (especially confidence scores) and reported segregation. Experiment 3 used a temporal discrimination task; this also failed to provide evidence of automatic stream segregation, because no interaction was found between the effects of sequence length and electrode separation. Experiment 4 explored schema-based grouping using interleaved melody discrimination; listeners were not able to segregate targets and distractors based on pitch differences, unless accompanied by substantial level differences. Experiment 5 evaluated concurrent segregation in a task requiring the detection of level changes in individual components of a complex tone. Generally, large changes were needed and abrupt changes were no easier to detect than gradual ones. In experiment 6, NRT testing confirmed substantially overlapping simulation by intracochlear electrodes. Overall, little or no evidence of auditory grouping by implant listeners was found.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study considers the application of image analysis in petrography and investigates the possibilities for advancing existing techniques by introducing feature extraction and analysis capabilities of a higher level than those currently employed. The aim is to construct relevant, useful descriptions of crystal form and inter-crystal relations in polycrystalline igneous rock sections. Such descriptions cannot be derived until the `ownership' of boundaries between adjacent crystals has been established: this is the fundamental problem of crystal boundary assignment. An analysis of this problem establishes key image features which reveal boundary ownership; a set of explicit analysis rules is presented. A petrographic image analysis scheme based on these principles is outlined and the implementation of key components of the scheme considered. An algorithm for the extraction and symbolic representation of image structural information is developed. A new multiscale analysis algorithm which produces a hierarchical description of the linear and near-linear structure on a contour is presented in detail. Novel techniques for symmetry analysis are developed. The analyses considered contribute both to the solution of the boundary assignment problem and to the construction of geologically useful descriptions of crystal form. The analysis scheme which is developed employs grouping principles such as collinearity, parallelism, symmetry and continuity, so providing a link between this study and more general work in perceptual grouping and intermediate level computer vision. Consequently, the techniques developed in this study may be expected to find wider application beyond the petrographic domain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Influential models of edge detection have generally supposed that an edge is detected at peaks in the 1st derivative of the luminance profile, or at zero-crossings in the 2nd derivative. However, when presented with blurred triangle-wave images, observers consistently marked edges not at these locations, but at peaks in the 3rd derivative. This new phenomenon, termed ‘Mach edges’ persisted when a luminance ramp was added to the blurred triangle-wave. Modelling of these Mach edge detection data required the addition of a physiologically plausible filter, prior to the 3rd derivative computation. A viable alternative model was examined, on the basis of data obtained with short-duration, high spatial-frequency stimuli. Detection and feature-making methods were used to examine the perception of Mach bands in an image set that spanned a range of Mach band detectabilities. A scale-space model that computed edge and bar features in parallel provided a better fit to the data than 4 competing models that combined information across scale in a different manner, or computed edge or bar features at a single scale. The perception of luminance bars was examined in 2 experiments. Data for one image-set suggested a simple rule for perception of a small Gaussian bar on a larger inverted Gaussian bar background. In previous research, discriminability (d’) has typically been reported to be a power function of contrast, where the exponent (p) is 2 to 3. However, using bar, grating, and Gaussian edge stimuli, with several methodologies, values of p were obtained that ranged from 1 to 1.7 across 6 experiments. This novel finding was explained by appealing to low stimulus uncertainty, or a near-linear transducer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nearest feature line-based subspace analysis is first proposed in this paper. Compared with conventional methods, the newly proposed one brings better generalization performance and incremental analysis. The projection point and feature line distance are expressed as a function of a subspace, which is obtained by minimizing the mean square feature line distance. Moreover, by adopting stochastic approximation rule to minimize the objective function in a gradient manner, the new method can be performed in an incremental mode, which makes it working well upon future data. Experimental results on the FERET face database and the UCI satellite image database demonstrate the effectiveness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Web APIs have gained increasing popularity in recent Web service technology development owing to its simplicity of technology stack and the proliferation of mashups. However, efficiently discovering Web APIs and the relevant documentations on the Web is still a challenging task even with the best resources available on the Web. In this paper we cast the problem of detecting the Web API documentations as a text classification problem of classifying a given Web page as Web API associated or not. We propose a supervised generative topic model called feature latent Dirichlet allocation (feaLDA) which offers a generic probabilistic framework for automatic detection of Web APIs. feaLDA not only captures the correspondence between data and the associated class labels, but also provides a mechanism for incorporating side information such as labelled features automatically learned from data that can effectively help improving classification performance. Extensive experiments on our Web APIs documentation dataset shows that the feaLDA model outperforms three strong supervised baselines including naive Bayes, support vector machines, and the maximum entropy model, by over 3% in classification accuracy. In addition, feaLDA also gives superior performance when compared against other existing supervised topic models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this poster we presented our preliminary work on the study of spammer detection and analysis with 50 active honeypot profiles implemented on Weibo.com and QQ.com microblogging networks. We picked out spammers from legitimate users by manually checking every captured user's microblogs content. We built a spammer dataset for each social network community using these spammer accounts and a legitimate user dataset as well. We analyzed several features of the two user classes and made a comparison on these features, which were found to be useful to distinguish spammers from legitimate users. The followings are several initial observations from our analysis on the features of spammers captured on Weibo.com and QQ.com. ¦The following/follower ratio of spammers is usually higher than legitimate users. They tend to follow a large amount of users in order to gain popularity but always have relatively few followers. ¦There exists a big gap between the average numbers of microblogs posted per day from these two classes. On Weibo.com, spammers post quite a lot microblogs every day, which is much more than legitimate users do; while on QQ.com spammers post far less microblogs than legitimate users. This is mainly due to the different strategies taken by spammers on these two platforms. ¦More spammers choose a cautious spam posting pattern. They mix spam microblogs with ordinary ones so that they can avoid the anti-spam mechanisms taken by the service providers. ¦Aggressive spammers are more likely to be detected so they tend to have a shorter life while cautious spammers can live much longer and have a deeper influence on the network. The latter kind of spammers may become the trend of social network spammer. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How speech is separated perceptually from other speech remains poorly understood. In a series of experiments, perceptual organisation was probed by presenting three-formant (F1+F2+F3) analogues of target sentences dichotically, together with a competitor for F2 (F2C), or for F2+F3, which listeners must reject to optimise recognition. To control for energetic masking, the competitor was always presented in the opposite ear to the corresponding target formant(s). Sine-wave speech was used initially, and different versions of F2C were derived from F2 using separate manipulations of its amplitude and frequency contours. F2Cs with time-varying frequency contours were highly effective competitors, whatever their amplitude characteristics, whereas constant-frequency F2Cs were ineffective. Subsequent studies used synthetic-formant speech to explore the effects of manipulating the rate and depth of formant-frequency change in the competitor. Competitor efficacy was not tuned to the rate of formant-frequency variation in the target sentences; rather, the reduction in intelligibility increased with competitor rate relative to the rate for the target sentences. Therefore, differences in speech rate may not be a useful cue for separating the speech of concurrent talkers. Effects of competitors whose depth of formant-frequency variation was scaled by a range of factors were explored using competitors derived either by inverting the frequency contour of F2 about its geometric mean (plausibly speech-like pattern) or by using a regular and arbitrary frequency contour (triangle wave, not plausibly speech-like) matched to the average rate and depth of variation for the inverted F2C. Competitor efficacy depended on the overall depth of frequency variation, not depth relative to that for the other formants. Furthermore, the triangle-wave competitors were as effective as their more speech-like counterparts. Overall, the results suggest that formant-frequency variation is critical for the across-frequency grouping of formants but that this grouping does not depend on speech-specific constraints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rhythm created by spacing a series of brief tones in a regular pattern can be disguised by interleaving identical distractors at irregular intervals. The disguised rhythm can be unmasked if the distractors are allocated to a separate stream from the rhythm by integration with temporally overlapping captors. Listeners identified which of 2 rhythms was presented, and the accuracy and rated clarity of their judgment was used to estimate the fusion of the distractors and captors. The extent of fusion depended primarily on onset asynchrony and degree of temporal overlap. Harmonic relations had some influence, but only an extreme difference in spatial location was effective (dichotic presentation). Both preattentive and attentionally driven processes governed performance. (PsycINFO Database Record (c) 2012 APA, all rights reserved)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How speech is separated perceptually from other speech remains poorly understood. In a series of experiments, perceptual organisation was probed by presenting three-formant (F1+F2+F3) analogues of target sentences dichotically, together with a competitor for F2 (F2C), or for F2+F3, which listeners must reject to optimise recognition. To control for energetic masking, the competitor was always presented in the opposite ear to the corresponding target formant(s). Sine-wave speech was used initially, and different versions of F2C were derived from F2 using separate manipulations of its amplitude and frequency contours. F2Cs with time-varying frequency contours were highly effective competitors, whatever their amplitude characteristics, whereas constant-frequency F2Cs were ineffective. Subsequent studies used synthetic-formant speech to explore the effects of manipulating the rate and depth of formant-frequency change in the competitor. Competitor efficacy was not tuned to the rate of formant-frequency variation in the target sentences; rather, the reduction in intelligibility increased with competitor rate relative to the rate for the target sentences. Therefore, differences in speech rate may not be a useful cue for separating the speech of concurrent talkers. Effects of competitors whose depth of formant-frequency variation was scaled by a range of factors were explored using competitors derived either by inverting the frequency contour of F2 about its geometric mean (plausibly speech-like pattern) or by using a regular and arbitrary frequency contour (triangle wave, not plausibly speech-like) matched to the average rate and depth of variation for the inverted F2C. Competitor efficacy depended on the overall depth of frequency variation, not depth relative to that for the other formants. Furthermore, the triangle-wave competitors were as effective as their more speech-like counterparts. Overall, the results suggest that formant-frequency variation is critical for the across-frequency grouping of formants but that this grouping does not depend on speech-specific constraints. © Springer Science+Business Media New York 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rotation invariance is important for an iris recognition system since changes of head orientation and binocular vergence may cause eye rotation. The conventional methods of iris recognition cannot achieve true rotation invariance. They only achieve approximate rotation invariance by rotating the feature vector before matching or unwrapping the iris ring at different initial angles. In these methods, the complexity of the method is increased, and when the rotation scale is beyond the certain scope, the error rates of these methods may substantially increase. In order to solve this problem, a new rotation invariant approach for iris feature extraction based on the non-separable wavelet is proposed in this paper. Firstly, a bank of non-separable orthogonal wavelet filters is used to capture characteristics of the iris. Secondly, a method of Markov random fields is used to capture rotation invariant iris feature. Finally, two-class kernel Fisher classifiers are adopted for classification. Experimental results on public iris databases show that the proposed approach has a low error rate and achieves true rotation invariance. © 2010.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dimensionality reduction is a very important step in the data mining process. In this paper, we consider feature extraction for classification tasks as a technique to overcome problems occurring because of “the curse of dimensionality”. Three different eigenvector-based feature extraction approaches are discussed and three different kinds of applications with respect to classification tasks are considered. The summary of obtained results concerning the accuracy of classification schemes is presented with the conclusion about the search for the most appropriate feature extraction method. The problem how to discover knowledge needed to integrate the feature extraction and classification processes is stated. A decision support system to aid in the integration of the feature extraction and classification processes is proposed. The goals and requirements set for the decision support system and its basic structure are defined. The means of knowledge acquisition needed to build up the proposed system are considered.