943 resultados para Fe-S cluster-containing protein
Resumo:
Strains of Acidithiobacillus ferrooxidans exhibited differences in the inhibition of Fe(2+) oxidation in the presence of 250 mm of cadmium, zinc, and manganese sulfates in respirometric assays. Strains LR and I35 were practically not inhibited, whereas strains SSP and V3 showed significant inhibition (30-70%). Analysis by SDS-PAGE of total proteins from cells grown in the absence of metal sulfates showed different profiles between the more tolerant strains (LR and 135) and the more susceptible ones (SSP and V3). Total proteins of strains LR and V3 were also resolved by two-dimensional polyacrylamide gel electrophoresis (2-DE). A set of major proteins (40, 32, 22, and 20 kDa) could be identified only in the more tolerant strain LR. Our results show that protein profiles analysis could differentiate A. ferrooxidans strains that considerably differ in the tolerance to metal sulfates and present low genomic similarity as revealed by Random Amplified Polymorphic DNA (RAPD) data obtained previously in our laboratory.
Resumo:
Small nuclear ribonucleoproteins (snRNPs)are involved in trans-splicing processing of pre-mRNA in Trypanosoma cruzi. To clone T. cruzi snRNPs we screened an epimastigote cDNA library with a purified antibody raised against the Sm-binding site of a yeast sequence. A clone was obtained containing a 507 bp-insert with an ORF of 399 bp and coding for a protein of 133 amino acids. Sequence analysis revealed high identity with the L27 ribosomal proteins from different species including: Canis familiaris, Homo sapiens, Schizosaccharomyces pombe and Saccharomyces cerevisiae. This protein has not been previously described in the literature and seems to be a new ribosomal protein in T. cruzi and was given the code TcrL27. To express this recombinant T. cruzi L27 ribosomal protein in E. coli, the insert was subcloned into the pET32a vector and a 26 kDa recombinant protein was purified. Immunoblotting studies demonstrated that this purified recombinant protein was recognized by the same anti-Sm serum used in the library screening as well as by chagasic and systemic lupus erythemathosus (SLE) sera. Our results suggest that the T. cruzi L27 ribosomal protein may be involved in autoimmunity of Chagas disease.
Resumo:
Adriamycin, a commonly used antineoplastic antibiotic, induces glomerular lesions in rats, resulting in persistent proteinuria and glomerulosclerosis. We studied the effects of dietary protein and of an angiotensin I converting enzyme inhibitor on the progression of this nephropathy and the evolution of the histological lesions, as well as mesangial macromolecule flow. Adriamycin nephropathy was induced by injecting a single iv dose of adriamycin (3 mg/kg body weight) into the tail vein of male Wistar rats (weight, 180-200 g). In Experiment I animals with adriamycin-induced nephropathy were fed diets containing 6% (Low-Protein Diet Group = LPDG), 20% (Normal-Protein Diet Group = NPDG) and 40% (High-protein Diet Group = HPDG) protein and were observed for 30 weeks. In Experiment II the rats with adriamycin nephropathy were divided into 2 groups: ADR, that received adriamycin alone, and ADR-ENA, that received adriamycin plus enalapril, an angiotensin I converting enzyme inhibitor. The animals were sacrificed after a 24-week observation period. Six hours before sacrifice the animals were injected with I-131-ferritin and the amount of I-131-ferritin in the glomeruli was measured. In Experiment III, renal histology was performed 4, 8 and 16 weeks after adriamycin injection. At the end of Experiment I the tubulointerstitial lesion index was 2 for LPDG, 8 for NPDG, and 7.5 for HPDG (P<0.05); the frequency of glomerulosclerosis was 19 +/- 6.1% in LPDG, 42.6 +/- 6% in NPDG, and 54 +/- 9% in HPDG (P<0.05); and proteinuria was 61.1 +/- 25 mg/24 h in LPDG, 218.7 +/- 27.5 mg/24 h in NPDG, and 324.5 +/- 64.8 mg/24 h in HPDG (P<0.05). In Experiment II, at sacrifice, 24-h proteinuria was 189 +/- 16.1 mg in ADR, and 216 +/- 26.1 mg in ADR-ENA (P>0.05); the tubulointerstitial lesion index was 5 for ADR, and 5 for ADR-ENA (P>0.05); the frequency of glomerulosclerosis was 40 +/- 5.2% in ADR and 44 +/- 6% in ADR-ENA (P>0.05); the amount of I-131-ferritin in the mesangium was 214.26 +/- 22.71 cpm/mg protein in ADR and 253.77 +/- 69.72 cpm/mg protein in ADR-ENA (P>0.05). In Experiment III, sequential histological analysis revealed an acute tubulointerstitial cellular infiltrate at week 4, which was decreased at week 8. Tubular casts and dilatation were first seen at week 8 and increased at week 16 when few glomerular lesions were found. The results suggest that the tubulointerstitial lesions may play a role in the development of glomerulosclerosis in adriamycin-induced nephropathy.
Resumo:
This work describes the effect of feeding enzymatically hydrolyzed a-lactalbumin on blood sugar, albumin and fatty acids, muscular and hepatic glycogen of rats subjected to physical exercise. Three normoenergetic/normoproteic diets, containing either casein (C), alpha-lactalbumin (L) or alpha-lactalbumin hydrolyzate (H) were fed to thirty male Wistar rats for five weeks. During this period, half of the rats swam for 1 hr daily (T category) while the other half remained sedentary (S category). At the end of training, all rats were required to swim to exhaustion. The results showed that those rats of the T-category consuming diet H reached exhaustion with significantly higher concentrations of serum glucose ([H] 56.0 and [L] 32.3 mg/100ml), serum albumin ([H] 3.8 and [L] 2.1 mg/dl) and muscle glycogen ([H] 2.1 and [L] 0.6 mg/g), while no differences were observed between diets regarding the time of arrival to exhaustion. Results from diets C and L differed minimally. It was concluded that feeding the hydrolyzed protein may result in nutritional advantage to the exercising rat. (C) 1998 Elsevier B.V.
Resumo:
Hybrid organic - inorganic nanocomposites doped with Fe-II and Fe-III ions and exhibiting interesting magnetic properties have been obtained by the sol - gel process. The hybrid matrix of these ormosils ( organically modified silicates), classed as di-ureasils and termed U( 2000), is composed of poly( oxyethylene) chains of variable length grafted to siloxane groups by means of urea crosslinkages. Iron perchlorate and iron nitrate were incorporated in the diureasil matrices, leading to compositions within the range 80 greater than or equal to n greater than or equal to 10, n being the molar ratio of ether-type O atoms per cation. The structure of the doped diureasils was investigated by small-angle X-ray scattering (SAXS). For Fe-II-doped samples, SAXS results suggest the existence of a two-level hierarchical structure. The primary level is composed of spatially correlated siloxane clusters embedded in the polymeric matrix and the secondary, coarser level consists of domains where the siloxane clusters are segregated. The structure of Fe-III-doped hybrids is different, revealing the existence of iron oxide based nanoclusters, identified as ferrihydrite by wide-angle X-ray diffraction, dispersed in the hybrid matrix. The magnetic susceptibility of these materials was determined by zero-field-cooling and field-cooling procedures as functions of both temperature and field. The different magnetic features between Fe-II- and Fe-III-doped samples are consistent with the structural differences revealed by SAXS. While Fe-II-doped composites exhibit a paramagnetic Curie-type behaviour, hybrids containing Fe-III ions show thermal and field irreversibilities.
Resumo:
A method is proposed for the simultaneous determination of Al, As, Cu, Fe, Mn, and Ni in fuel ethanol by electrothermal atomic absorption spectrometry (ETAAS) using W-Rh permanent modifier together with Pd(NO3)(2) + Mg(NO3)(2) conventional modifier. The integrated platform of a transversely heated graphite atomizer (THGA) was treated with tungsten, followed by rhodium, forming a deposit containing 250 mug W + 200 mug Rh. A 500-muL, volume of fuel ethanol was diluted with 500 muL, of 0.14 mol L-1 HNO3 in an autosampler cup of the spectrometer. Then, 20 muL, of the diluted ethanol was introduced into the pretreated graphite platform followed by the introduction of 5 mug Pd(NO3)(2) + 3 mug Mg(NO3)(2). The injection of this modifier was required to improve arsenic and iron recoveries in fuel ethanol. Calibrations were carried out using multi-element reference solutions prepared in diluted ethanol (1 + 1, v/v) acidified to 0. 14 mol L-1 HNO3. The pyrolysis and atomization temperatures of the heating program were 1200degreesC and 2200degreesC, respectively, which were obtained with multielement reference solutions in acidic diluted ethanol (1 + 1, v/v; 0. 14 mol L-1 HNO3). The characteristic masses for the simultaneous determination in ethanol fuel were 78 pg Al, 33 pg As, 10 pg Cu, 14 pg Fe, 7 pg Mn, and 24 pg Ni. The lifetime of the pretreated tube was about 700 firings. The detection limits (D.L.) were 1.9 mug L-1 Al, 2.9 mug L-1 As, 0.57 mug L-1.Cu, 1.3 mug L-1 Fe, 0.40 mug L-1 Mn, and 1.3 mug L-1 Ni. The relative standard deviations (n = 12) were 4%, 4%, 3%, 1.5%, 1.2%, and 2.2% for Al, As, Cu, Fe, Mn, and Ni, respectively. The recoveries of Al, As, Cu, Fe, Mn, and Ni added to the fuel ethanol samples varied from 81% to 95%, 80% to 98%, 97% to 109%, 85% to 107%, 98% to 106% and 97% to 103%, respectively. Accuracy was checked for the Al, As, Cu, Fe, Mn, and Ni determination in 10 samples purchased at a local gas station in Araraquara-SP City, Brazil. A paired t-test showed that at the 95% confidence level the results were in agreement with those obtained by single-element ETAAS.
Resumo:
Protein-energy malnutrition is a syndrome in which anaemia together with multivitamin and mineral deficiency may be present. The pathophysiological mechanisms involved have not, however, yet been completely elucidated. The aim of the present study was to evaluate the pathophysiological processes that occur in this anaemia in animals that were submitted to protein-energy malnutrition, in particular with respect to Fe concentration and the proliferative activity of haemopoietic cells. For this, histological, histochemical, cell culture and immunophenotyping techniques were used. Two-month-old male Swiss mice were submitted to protein-energy malnutrition with a low-protein diet (20g/kg) compared with control diet (400 g/kg). When the experimental group had attained a 20% loss of their original body weight, the animals from both groups received, intravenously, 20IU erythropoietin every other day for 14 d. Malnourished animals showed a decrease in red blood cells, Hb concentration and reticulocytopenia, as well as severe bone marrow and splenic atrophy. The results for serum Fe, total Fe-binding capacity, transferrin and erythropoietin in malnourished animals were no different from those of the control animals. Fe reserves in the spleen, liver and bone marrow were found to be greater in the malnourished animals. The mixed colony-forming unit assays revealed a smaller production of granulocyte-macrophage colony-forming units, erythroid burst-forming units, erythroid colony-forming units and CD45, CD117, CD119 and CD71 expression in the bone marrow and spleen cells of malnourished animals. These findings suggest that, in this protein-energy malnutrition model, anaemia is not caused by Fe deficiency or erythropoietin deficiency, but is a result of ineffective erythropoiesis.
Resumo:
The capacity of goethite for Cd-II substitution has been explored in a series of synthetic samples prepared from Fe-III and Cd-II nitrate solutions aged 21 days in alkaline media. The total metal content ([ Fe] + [ Cd]) was 0.071 M in all preparations. The samples have been characterized by chemical and X-ray diffraction analysis; the morphology of the solids is described. The cell parameters for all samples were obtained by the Rietveld fits to the X-ray diffraction data. Refined structures show that for samples prepared at the final molar ratio mu(Cd)less than or equal to5.50 (expressed as mu(Cd) = 100X[Cd]/[Cd] + [Fe]), a (Cd, Fe)-goethite is the only crystalline product. In these samples, the unit cell parameters increased as a function of Cd concentration, indicating Cd incorporation in the structural frame. At the preparative ratio, mu(Cd)=7.03, the incorporation of Cd in the goethite structure is drastically reduced and a probable Cd-substituted hematite is formed together with the Fe,Cd-goethite. (C) 2003 International Centre for Diffraction Data.
Resumo:
The objective of the present study was to investigate the effects of dietary macronutrient ratio on energy metabolism and on skeletal muscle mRNA expression of avian uncoupling protein (UCP), thought to be implicated in thermogenesis in birds. Broiler chickens from 2 to 6 weeks of age received one of three isoenergetic diets containing different macronutrient ratios (low-lipid (LL) 30 v. 77 g lipid/kg-, low-protein (LP) 125 v. 197 g crude protein (N X 6.25)/kg; low-carbohydrate (LC) 440 v. 520 g carbohydrate/kg). LP chickens were characterised by significantly lower body weights and food intakes compared with LL and LC chickens (-47 and -38% respectively) but similar heat production/kg metabolic body weight, as measured by indirect calorimetry, in the three groups. However, heat production/g food ingested was higher in animals receiving the LP diet (+41%, P<0.05). These chickens also deposited 57% less energy as protein (P<0.05) and 33% more as fat. No significant differences in energy and N balances were detected between LL and LC chickens. The diets with the higher fat contents (i.e. The LP and LC diets) induced slightly but significantly higher relative expressions of avian UCP mRNA in gastrocnemius muscle, measured by reverse transcription-polymerase chain reaction, than the LL diet (88 and 90 v. 78% glyceraldehyde-3-phosphate dehydrogenase respectively, P<0.05). Our present results are consistent with the recent view that UCP homologues could be involved in the regulation of lipid utilisation as fuel substrate and provide evidence that the macronutrient content of the diet regulates energy metabolism and especially protein and fat deposition.
Resumo:
This study was undertaken in a closed system with Nile tilapia (Oreochromis niloticus) to examine the effects of total replacement of fish meal (FM) by soybean meal. Nile tilapia fingerlings with an average weight of 5.34+/-0.08 g were hand-fed one of the five isoenergetic (approximate to13.5 MJ digestible energy kg(-1)) and isoproteic (approximate to31% of digestible protein) experimental diets to satiation, six times a day during 85 days in eight replicate fibreglass tanks (six fish per tank). The control diet containing FM was substituted by soybean meal, with and without essential amino acids (lysine, methionine and threonine) or dicalcium phosphate supplementation. The supplemental amino acids were added at levels to simulate the reference amino acid profile of Nile tilapia carcass protein, based on the ideal protein concept. The results showed that soybean meal diet supplemented only with dicalcium phosphate was inferior to the control diet with FM and soybean meal diets supplemented with dicalcium phosphate and essential amino acids. Multiple essential amino acids and dicalcium phosphate incorporation in soybean meal diets was associated with performance, whole-body composition and carcass yield equal to that of the fish fed with the control diet containing FM. These data suggest that a diet with all plant protein source, supplemented with essential amino acids, based on tissue amino acid profile, can totally replace FM in a diet for Nile tilapia, without adverse effects on the growth performance, carcass yield and composition.
Resumo:
The effect of intrauterine and postnatal protein-calorie malnutrition on the biochemical ability to perform exercise was investigated in young male rats. Malnourished rats were obtained by feeding dams a low-protein (6%) casein-based diet prepared in the laboratory during pregnancy and lactation. Control rats received an isocaloric diet containing 25% protein. The low-protein diet contained additional starch and glucose. At 45 days of age, malnourished rats showed lower body weight, serum protein, albumin and glucose levels, hematocrit values and heart glycogen content but higher circulating free fatty acids and gastrocnemius muscle glycogen than control rats. In response to exercise (50 min of swimming), control rats displayed lower heart, gastrocnemius and liver glycogen levels whereas malnourished rats showed low glycogen levels only in the gastrocnemius muscle. Both control and malnourished rats showed high serum glucose and free fatty acid levels after exercise. In conclusion, protein-calorie malnutrition improved muscle glycogen storage but this substrate was broken down to a greater extent in response to exercise. Malnourished rats were able to perform exercise maintaining high blood glucose levels, as observed in control rats, perhaps as a consequence of the elevated availability of circulating free fatty acids.
Resumo:
We studied glucose homeostasis in rat pups from darns fed on a normal-protein (170 g/kg) (NP) diet or a diet containing 60 g protein/kg (LP) during fetal life and the suckling period. At birth, total serum protein, serum albumin and serum insulin levels were similar in both groups. However, body weight and serum glucose levels in LP rats were lower than those in NP rats. At the end of the suckling period (28 d of age), total serum protein, serum albumin and serum insulin were significantly lower and the liver glycogen and serum free fatty acid levels were significantly higher in LP rats compared with NP rats. Although the fasting serum glucose level was similar in both groups, the area under the blood glucose concentration curve after a glucose load was higher for NP rats (859 (SEM 58) mmol/l per 120 min for NP rats v. 607 (SEM 52) mmol/l per 120 min for LP rats; P < 0.005). The mean post-glucose increase in insulin was higher for NP rats (30 (SEM 4.7) nmol/l per 120 min for NP rats v. 17 (SEM 3.9) nnol/l per 120 min for LP rats; P < 0.05). The glucose disappearance rate for NP rats(0.7 (SEM 0.1) %/min) was lower than that for LP rats (1.6 (SEM 0.2) %/min; P < 0.001). Insulin secretion from isolated islets (1 h incubation) in response to 16.7 mmol glucose/l was augmented 14-fold in NP rats but only 2.6-fold in LP rats compared with the respective basal secretion (2.8 mmol/l; P <0.001). These results indicate that in vivo as well as in vitro insulin secretion in pups from dams maintained on a LP diet is reduced. This defect may be counteracted by an increase in the sensitivity of target tissues to insulin.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The objective of this study was to evaluate the effects of balanced diets on the maturation of oocytes and the reproductive performance of P. mesopotamicus in cages. A completely random design with 224 fish in 16 cages measuring 5 m(3) was employed for this purpose. The treatments consisted of diets containing 18, 24, 30, and 36% crude protein (CP) provided ad libitum. The external and internal morphological characteristics of the specimens were examined, as well as: the position of the germinal vesicle, the distribution of oocyte diameters, the fertilization and hatching rates, the number of oocytes released, the total number of oocytes, the remaining weight and total weight of the ovaries, the gonadosomatic index, the condition factor (K), and the histology of the oocytes and ovaries post-spawning and during ovarian regression. The diameters of the oocytes collected before the first hormonal application displayed a unimodal distribution for the lowest protein content and a polymodal distribution for the other treatments. A similar situation was seen during spawning. The lowest fertilization and hatching rates were found as a consequence of the treatment with 30% CP (P < 0.05). The greatest hatching rate occurred in the females fed 18% CP. The greatest total oocyte weight was found in the specimens that received between 30 and 36% CP. The lowest K index was found in the females fed 36% CP. In conclusion, a diet containing 18% CP satisfies the reproductive requirements of females adapted to this system.
Resumo:
To investigate further the age-related reduction in muscle protein synthesis activity found previously using a crude polyribosome/pH 5 system (Pluskal et al., 1984), a 0.5M KCl washing procedure was utilized to remove the nonribosomal factors from polyribosomes isolated from male Sprague-Dawley rats in the following age groups: young (1 to 2 months), mature (12 months), and aged (22 to 24 months). Using a common source of enriched elongation factor fraction from young animals, it was not possible to demonstrate any significant difference (p > .05) in protein synthesis between the 0.5M KCl-washed polyribosomes isolated from the various age groups. Using a cell-free system containing young salt washed polyribosomes stimulated by the addition of 0.5M KCl-wash fractions, however, it was shown that the mature and aged salt-wash fractions were less (p < .05) active than material from young animals. Thus, the observed decline in protein synthesis efficiency during aging may be attributed to a reduced capacity to promote initiation/elongation by the nonribosomal salt wash fractions of muscle polyribosomes.