983 resultados para FRONTAL ORBITAL ADVANCEMENT
Resumo:
see inscriptions and label on portrait from same studio session, na18169
Resumo:
"Extracted from the 'Mirror of Parliament'."
Resumo:
Dedicated to the "Right Honorable the Viscount Melbourne, secretary of state for the Home department".
Resumo:
Proposed constitution for a county lyceum: p. 7-8.
Resumo:
Reports issued together.
Resumo:
Mode of access: Internet.
Resumo:
Bibliography: p. 392-401.
Resumo:
Cover title.
Resumo:
The first work is the English translation of the De augmentis scientiarum, not an edition of the "Advancement of learning" of 1605.
Resumo:
Background: This is the first report of involvement of Australian and New Zealand oral and maxillofacial surgeons in the management of isolated orbital floor blow-out fractures and was conducted to obtain comparisons with the results from a recent similar survey of British oral and maxillofacial surgeons. Methods: A questionnaire survey was sent to all 113 practising members of the Australian and New Zealand Association of Oral and Maxillofacial Surgeons in April 2002 with a second mailout 1 month later. Results: Sixty-nine per cent of the respondents were referred isolated orbital floor blow-out fractures for manage-ment, and just over half of these respondents estimated that 50% or more of the cases went to surgery. The materials most commonly used in orbital floor reconstruction were resorbable membrane for small defects and autologous bone for large defects. Conclusion: As in Britain, management of isolated orbital floor blow-out fractures comprises part of the surgical spectrum for many oral and maxillofacial surgeons in Australia and New Zealand. The management protocol was observed to be very similar between the two groups.
Resumo:
The molecular processes underlying alcohol dependence are not fully understood. Many characteristic behaviours result from neuroadaptations in the mesocorticolimbic system. In addition, alcoholism is associated with a distinct neuropathology. To elucidate the molecular basis of these features, we compared the RNA expression profile of the nucleus accumbens and prefrontal cortex of human brain from matched individual alcoholic and control cases using cDNA microarrays. Approximately 6% of genes with a marked alcohol response were common to the two brain regions. Alcohol-responsive genes were grouped into 11 functional categories. Predominant alcohol-responsive genes in the prefrontal cortex were those encoding DNA-binding proteins including transcription factors and repair proteins. There was also a down-regulation of genes encoding mitochondrial proteins, which could result in disrupted mitochondrial function and energy production leading to oxidative stress. Other alcohol-responsive genes in the prefrontal cortex were associated with neuroprotection/apoptosis. In contrast, in the nucleus accumbens, alcohol-responsive genes were associated with vesicle formation and regulation of cell architecture, which suggests a neuroadaptation to chronic alcohol exposure at the level of synaptic structure and function. Our data are in keeping with the previously reported alcoholism-related pathology characteristic of the prefrontal cortex, but suggest a persistent decrease in neurotransmission and changes in plasticity in the nucleus accumbens of the alcoholic.
Resumo:
Alcohol dependence is characterized by tolerance, physical dependence, and craving. The neuroadaptations underlying these effects of chronic alcohol abuse are likely due to altered gene expression. Previous gene expression studies using human post-mortem brain demonstrated that several gene families were altered by alcohol abuse. However, most of these changes in gene expression were small. It is not clear if gene expression profiles have sufficient power to discriminate control from alcoholic individuals and how consistent gene expression changes are when a relatively large sample size is examined. In the present study, microarray analysis (similar to 47 000 elements) was performed on the superior frontal cortex of 27 individual human cases ( 14 well characterized alcoholics and 13 matched controls). A partial least squares statistical procedure was applied to identify genes with altered expression levels in alcoholics. We found that genes involved in myelination, ubiquitination, apoptosis, cell adhesion, neurogenesis, and neural disease showed altered expression levels. Importantly, genes involved in neurodegenerative diseases such as Alzheimer's disease were significantly altered suggesting a link between alcoholism and other neurodegenerative conditions. A total of 27 genes identified in this study were previously shown to be changed by alcohol abuse in previous studies of human post-mortem brain. These results revealed a consistent re-programming of gene expression in alcohol abusers that reliably discriminates alcoholic from non-alcoholic individuals.