883 resultados para FORECASTING
Resumo:
This paper investigates the platoon dispersion model that is part of the 2010 Highway Capacity Manual that is used for forecasting downstream traffic flows for analyzing both signalized and TWSC intersections. The paper focuses on the effect of platoon dispersion on the proportion of time blocked, the conflicting flow rate, and the capacity flow rate for the major street left turn movement at a TWSC intersection. The existing HCM 2010 methodology shows little effect on conflicting flow or capacity for various distances downstream from the signalized intersection. Two methods are suggested for computing the conflicting flow and capacity of minor stream movements at the TWSC intersection that have more desirable properties than the existing HCM method. Further, if the existing HCM method is retained, the results suggest that the upstream signals model be dropped from the HCM method for TWSC intersections.
Resumo:
Large sized power transformers are important parts of the power supply chain. These very critical networks of engineering assets are an essential base of a nation’s energy resource infrastructure. This research identifies the key factors influencing transformer normal operating conditions and predicts the asset management lifespan. Engineering asset research has developed few lifespan forecasting methods combining real-time monitoring solutions for transformer maintenance and replacement. Utilizing the rich data source from a remote terminal unit (RTU) system for sensor-data driven analysis, this research develops an innovative real-time lifespan forecasting approach applying logistic regression based on the Weibull distribution. The methodology and the implementation prototype are verified using a data series from 161 kV transformers to evaluate the efficiency and accuracy for energy sector applications. The asset stakeholders and suppliers significantly benefit from the real-time power transformer lifespan evaluation for maintenance and replacement decision support.
Resumo:
his paper identifies some scaling relationships between solar activity and geomagnetic activity. We examine the scaling properties of hourly data for two geomagnetic indices (ap and AE), two solar indices (solar X-rays Xl and solar flux F10.7), and two inner heliospheric indices (ion density Ni and flow speed Vs) over the period 1995–2001 by the universal multifractal approach and the traditional multifractal analysis. We found that the universal multifractal model (UMM) provides a good fit to the empirical K(q) and τ(q) curves of these time series. The estimated values of the Lévy index α in the UMM indicate that multifractality exists in the time series for ap, AE, Xl, and Ni, while those for F10.7 and Vs are monofractal. The estimated values of the nonconservation parameter H of this model confirm that these time series are conservative which indicate that the mean value of the process is constant for varying resolution. Additionally, the multifractal K(q) and τ(q) curves, and the estimated values of the sparseness parameter C1 of the UMM indicate that there are three pairs of indices displaying similar scaling properties, namely ap and Xl, AE and Ni, and F10.7 and Vs. The similarity in the scaling properties of pairs (ap,Xl) and (AE,Ni) suggests that ap and Xl, AE and Ni are better correlated—in terms of scaling—than previous thought, respectively. But our results still cannot be used to advance forecasting of ap and AE by Xl and Ni, respectively, due to some reasons
Resumo:
In some of the countries where there has been a rapid increase in the use of online music distribution technologies, analysts have reported about declining sales of local music repertoire (e.g. Nordgård, 2013). The analysts are concerned about such tendencies since local music repertoire accounts for a sizable share of an average country’s total recorded music sales (e.g. IFPI, 2012). This paper searches for empirical evidence that may confirm these reports in a number of music markets in North America, Europe and Australasia. The paper makes a contribution to the literature on the digital transformation of the music industry since it combines and analyses data sources that previously have not been used in this context and gives a new perspective on changing user consumption practices in the music industry. The paper also examines the variation of geographic diversity over time among international acts that become commercially successful in the countries covered by the study.
Resumo:
Background and Aims: The objective of the study was to compare data obtained from the Cosmed K4 b2 and the Deltatrac II™ metabolic cart for the purpose of determining the validity of the Cosmed K4 b2 in measuring resting energy expenditure. Methods: Nine adult subjects (four male, five female) were measured. Resting energy expenditure was measured in consecutive sessions using the Cosmed K4 b2, the Deltatrac II™ metabolic cart separately and the Cosmed K4 b2 and Deltatrac II™ metabolic cart simultaneously, performed in random order. Resting energy expenditure (REE) data from both devices were then compared with values obtained from predictive equations. Results: Bland and Altman analysis revealed a mean bias for the four variables, REE, respiratory quotient (RQ), VCO2, VO2 between data obtained from Cosmed K4 b2 and Deltatrac II™ metabolic cart of 268 ± 702 kcal/day, -0.0±0.2, 26.4±118.2 and 51.6±126.5 ml/min, respectively. Corresponding limits of agreement for the same four variables were all large. Also, Bland and Altman analysis revealed a larger mean bias between predicted REE and measured REE using Cosmed K4 b2 data (-194±603 kcal/day) than using Deltatrac™ metabolic cart data (73±197 kcal/day). Conclusions: Variability between the two devices was very high and a degree of measurement error was detected. Data from the Cosmed K4 b2 provided variable results on comparison with predicted values, thus, would seem an invalid device for measuring adults. © 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper reports an experiment undertaken to examine the impact of burning in spring together with reduced grazing pressure on the dynamics of H. contortus and Aristida spp. In H. contortus pasture in south-eastern Queensland. The overall results indicate that spring burning in combination with reduced grazing pressure had no marked effect on the density of either grass species. This was attributed to 2 factors. Firstly, extreme drought conditions restricted any increase in H. contortus seedling establishment despite the presence of an adequate soil seed bank prior to summer; and secondly, some differences occurred in the response to fire of the diverse taxonomic groupings in the species of Aristida spp. present at the study site. This study concluded that it is necessary to identify appropriate taxonomic units within the Aristida genus and that, where appropriate, burning in spring to manage pasture composition should be conducted under favorable rainfall conditions using seasonal forecasting indicators such as the Southern Oscillation Index
Resumo:
The Gascoyne-Murchison region of Western Australia experiences an arid to semi-arid climate with a highly variable temporal and spatial rainfall distribution. The region has around 39.2 million hectares available for pastoral lease and supports predominantly catle and sheep grazing leases. In recent years a number of climate forecasting systems have been available offering rainfall probabilities with different lead times and a forecast period; however, the extent to which these systems are capable of fulfilling the requirements of the local pastoralists is still ambiguous. Issues can range from ensuring forecasts are issued with sufficient lead time to enable key planning or decisions to be revoked or altered, to ensuring forecast language is simple and clear, to negate possible misunderstandings in interpretation. A climate research project sought to provide an objective method to determine which available forecasting systems had the greatest forecasting skill at times of the year relevant to local property management. To aid this climate research project, the study reported here was undertaken with an overall objective of exploring local pastoralists' climate information needs. We also explored how well they understand common climate forecast terms such as 'mean', median' and 'probability', and how they interpret and apply forecast information to decisions. A stratified, proportional random sampling was used for the purpose of deriving the representative sample based on rainfall-enterprise combinations. In order to provide more time for decision-making than existing operational forecasts that are issued with zero lead time, pastoralists requested that forecasts be issued for May-July and January-March with lead times counting down from 4 to 0 months. We found forecasts of between 20 and 50 mm break-of-season or follow-up rainfall were likely to influence decisions. Eighty percent of pastoralists demonstrated in a test question that they had a poor technical understanding of how to interpret the standard wording of a probabilistic median rainfall forecast. this is worthy of further research to investigate whether inappropriate management decisions are being made because the forecasts are being misunderstood. We found more than half the respondents regularly access and use weather and climate forecasts or outlook information from a range of sources and almost three-quarters considered climate information or tools useful, with preferred methods for accessing this information by email, faxback service, internet and the Department of Agriculture Western Australia's Pastoral Memo. Despite differences in enterprise types and rainfall seasonality across the region we found seasonal climate forecasting needs were relatively consistent. It became clear that providing basic training and working with pastoralists to help them understand regional climatic drivers, climate terminology and jargon, and the best ways to apply the forecasts to enhance decision-making are important to improve their use of information. Consideration could also be given to engaging a range of producers to write the climate forecasts themselves in the language they use and understand, in consultation with the scientists who prepare the forecasts.
Resumo:
In this paper we present a novel application of scenario methods to engage a diverse constituency of senior stakeholders, with limited time availability, in debate to inform planning and policy development. Our case study project explores post-carbon futures for the Latrobe Valley region of the Australian state of Victoria. Our approach involved initial deductive development of two ‘extreme scenarios’ by a multi-disciplinary research team, based upon an extensive research programme. Over four workshops with the stakeholder constituency, these initial scenarios were discussed, challenged, refined and expanded through an inductive process, whereby participants took ‘ownership’ of a final set of three scenarios. These were both comfortable and challenging to them. The outcomes of this process subsequently informed public policy development for the region. Whilst this process did not follow a single extant structured, multi-stage scenario approach, neither was it devoid of form. Here, we seek to theorise and codify elements of our process – which we term ‘scenario improvisation’ – such that others may adopt it.
Resumo:
The accuracy of synoptic-based weather forecasting deteriorates rapidly after five days and is not routinely available beyond 10 days. Conversely, climate forecasts are generally not feasible for periods of less than 3 months, resulting in a weather-climate gap. The tropical atmospheric phenomenon known as the Madden-Julian Oscillation (MJO) has a return interval of 30 to 80 days that might partly fill this gap. Our near-global analysis demonstrates that the MJO is a significant phenomenon that can influence daily rainfall patterns, even at higher latitudes, via teleconnections with broadscale mean sea level pressure (MSLP) patterns. These weather states provide a mechanistic basis for an MJO-based forecasting capacity that bridges the weather-climate divide. Knowledge of these tropical and extra-tropical MJO-associated weather states can significantly improve the tactical management of climate-sensitive systems such as agriculture.
Resumo:
This paper aims to compare the shift in frequency distribution and skill of seasonal climate forecasting of both streamflow and rainfall in eastern Australia based on the Southern Oscillation Index (SOI) Phase system. Recent advances in seasonal forecasting of climate variables have highlighted opportunities for improving decision making in natural resources management. Forecasting of rainfall probabilities for different regions in Australia is available, but the use of similar forecasts for water resource supply has not been developed. The use of streamflow forecasts may provide better information for decision-making in irrigation supply and flow management for improved ecological outcomes. To examine the relative efficacy of seasonal forecasting of streamflow and rainfall, the shift in probability distributions and the forecast skill were evaluated using the Wilcoxon rank-sum test and the linear error in probability space (LEPS) skill score, respectively, at three river gauging stations in the Border Rivers Catchment of the Murray-Darling Basin in eastern Australia. A comparison of rainfall and streamflow distributions confirms higher statistical significance in the shift of streamflow distribution than that in rainfall distribution. Moreover, streamflow distribution showed greater skill of forecasting with 0-3 month lead time, compared to rainfall distribution.
Resumo:
We study which factors in terms of trading environment and trader characteristics determine individual information acquisition in experimental asset markets. Traders with larger endowments, existing inconclusive information, lower risk aversion, and less experience in financial markets tend to acquire more information. Overall, we find that traders overacquire information, so that informed traders on average obtain negative profits net of information costs. Information acquisition and the associated losses do not diminish over time. This overacquisition phenomenon is inconsistent with predictions of rational expectations equilibrium, and we argue it resembles the overdissipation results from the contest literature. We find that more acquired information in the market leads to smaller differences between fundamental asset values and prices. Thus, the overacquisition phenomenon is a novel explanation for the high forecasting accuracy of prediction markets.
Resumo:
Survey methods were engaged to measure the change in use and knowledge of climate information by pastoralists in western Queensland. The initial mail survey was undertaken in 2000-01 (n=43) and provided a useful benchmark of pastoralists climate knowledge. Two years of climate applications activities were completed and clients were re-surveyed in 2003 (n=49) to measure the change in knowledge and assess the effectiveness of the climate applications activities. Two methods were used to assess changes in client knowledge, viz., self-assessment and test questions. We found that the use of seasonal climate forecasts in decision making increased from 36% in 2001 (n=42) to 51% in 2003 (n=49) (P=0.07). The self-assessment technique was unsatisfactory as a measure of changing knowledge over short periods (1-3 years), but the test question technique was successful and indicated an improvement in climate knowledge among respondents. The increased levels of use of seasonal climate forecasts in management and improved knowledge was partly attributed to the climate applications activities of the project. Further, those who used seasonal forecasting (n=25) didn't understand key components of forecasts (e.g. probability, median) better than those who didn't use seasonal forecasts (n=24) (P>0.05). This identifies the potential for misunderstanding and misinterpretation of forecasts among users and highlights the need for providers of forecasts to understand the difficulties and prepare simply written descriptions of forecasts and disseminate these with the maps showing probabilities. The most preferred means of accessing climate information were internet, email, 'The Season Ahead' newsletter and newspaper. The least preferred were direct contact with extension officers and attending field days and group meetings. Eighty-six percent of respondents used the internet and 67% used ADSL broadband internet (April 2003). Despite these findings, extension officers play a key role in preparing and publishing the information on the web, in emails and newsletters. We also believe that direct contact with extension officers trained in climate applications is desirable in workshop-like events to improve knowledge of the difficult concepts underpinning climate forecasts, which may then stimulate further adoption.
Resumo:
In 2001, an incursion of Mycosphaerella fijiensis, the causal agent of black Sigatoka, was detected in Australia's largest commercial banana growing region, the Tully Banana Production Area in North Queensland. An intensive surveillance and eradication campaign was undertaken which resulted in the reinstatement of the disease-free status for black Sigatoka in 2005. This was the first time black Sigatoka had ever been eradicated from commercial plantations. The success of the eradication campaign was testament to good working relationships between scientists, growers, crop monitors, quarantine regulatory bodies and industry. A key contributing factor to the success was the deployment of a PCR-based molecular diagnostic assay, developed by the Cooperative Research Centre for Tropical Plant Protection (CRCTPP). This assay complemented morphological identification and allowed high throughput diagnosis of samples facilitating rapid decision-making during the eradication campaign. This paper describes the development and successful deployment of molecular diagnostics for black Sigatoka. Shortcomings in the gel-based assay are discussed and the advantages of highly specific real-time PCR assays, capable of differentiating between Mycosphaerella fijiensis, Mycosphaerella musicola and Mycosphaerella eumusae are outlined. Real-time assays may provide a powerful diagnostic tool for applications in surveillance, disease forecasting and resistance testing for Sigatoka leaf spot diseases.
Resumo:
Given the growing importance of the Chinese tourist market to Australia, an understanding of Chinese tourists' arrival patterns is essential to accurate forecasting of future arrivals. Drawing on 25 years of records (1991-2015), this study developed a time-series model of monthly arrivals of Chinese tourists in Australia. The model reflects the exponentially increasing trend and strong seasonality of arrivals. Excellent results from validation of the model's forecasts endorsed this time-series model's potential in the policy prescription and management practice of Australian tourism industries.
Resumo:
When exposed to hot (22-35 degrees C) and dry climatic conditions in the field during the final 4-6 weeks of pod filling, peanuts (Arachis hypogaea L.) can accumulate highly carcinogenic and immuno-suppressing aflatoxins. Forecasting of the risk posed by these conditions can assist in minimizing pre-harvest contamination. A model was therefore developed as part of the Agricultural Production Systems Simulator (APSIM) peanut module, which calculated an aflatoxin risk index (ARI) using four temperature response functions when fractional available soil water was <0.20 and the crop was in the last 0.40 of the pod-filling phase. ARI explained 0.95 (P <= 0.05) of the variation in aflatoxin contamination, which varied from 0 to c. 800 mu g/kg in 17 large-scale sowings in tropical and four sowings in sub-tropical environments carried out in Australia between 13 November and 16 December 2007. ARI also explained 0.96 (P <= 0.01) of the variation in the proportion of aflatoxin-contaminated loads (>15 mu g/kg) of peanuts in the Kingaroy region of Australia during the period between the 1998/99 and 2007/08 seasons. Simulation of ARI using historical climatic data from 1890 to 2007 indicated a three-fold increase in its value since 1980 compared to the entire previous period. The increase was associated with increases in ambient temperature and decreases in rainfall. To facilitate routine monitoring of aflatoxin risk by growers in near real time, a web interface of the model was also developed. The ARI predicted using this interface for eight growers correlated significantly with the level of contamination in crops (r=095, P <= 0.01). These results suggest that ARI simulated by the model is a reliable indicator of aflatoxin contamination that can be used in aflatoxin research as well as a decision-support tool to monitor pre-harvest aflatoxin risk in peanuts.