937 resultados para Extracellular digestion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. The factors behind the reemergence of severe, invasive group A streptococcal (GAS) diseases are unclear, but it could be caused by altered genetic endowment in these organisms. However, data from previous studies assessing the association between single genetic factors and invasive disease are often conflicting, suggesting that other, as-yet unidentified factors are necessary for the development of this class of disease. Methods. In this study, we used a targeted GAS virulence microarray containing 226 GAS genes to determine the virulence gene repertoires of 68 GAS isolates (42 associated with invasive disease and 28 associated with noninvasive disease) collected in a defined geographic location during a contiguous time period. We then employed 3 advanced machine learning methods (genetic algorithm neural network, support vector machines, and classification trees) to identify genes with an increased association with invasive disease. Results. Virulence gene profiles of individual GAS isolates varied extensively among these geographically and temporally related strains. Using genetic algorithm neural network analysis, we identified 3 genes with a marginal overrepresentation in invasive disease isolates. Significantly, 2 of these genes, ssa and mf4, encoded superantigens but were only present in a restricted set of GAS M-types. The third gene, spa, was found in variable distributions in all M-types in the study. Conclusions. Our comprehensive analysis of GAS virulence profiles provides strong evidence for the incongruent relationships among any of the 226 genes represented on the array and the overall propensity of GAS to cause invasive disease, underscoring the pathogenic complexity of these diseases, as well as the importance of multiple bacteria and/ or host factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using immunohistochemistry and RNA analyses we examined the fate of components of a newly identified matrix that develops between granulosa cells (focimatrix, abbreviated from focal intraepithelial matrix) and of the follicular basal lamina in ovulating bovine ovarian follicles. Pre- and postovulatory follicles were generated by treatment with estradiol (Day 1), progesterone (Days 1-10), and prostaglandin analogue (Day 9) with either no further treatment (Group 1, n = 6) and or with 25 mg porcine LH (Day 11, Group 2, n = 8 or Day 10, Group 3, n = 8) and ovariectomy on Day 12 (12-14 hr post LH in Group 2, 38-40.5 hr in Group 3). In the time frame examined no loss of follicular basal lamina laminin chains beta 2 and gamma 1 or nidogen 1 was observed. In the follicular basal lamina collagen type IV alpha 1 and perlecan were present prior to ovulation; after ovulation collagen type IV alpha 1 was discontinuously distributed and perlecan was absent. Versican in the theca interna adjacent to the follicular basal lamina in preovulatory follicles was not observed post ovulation, however, the granulosa cells then showed strong cytoplasmic staining for versican. Expression of versican isoforms V0, V1, and V3 was detected at all stages. Focimatrix was observed in preovulatory follicles. It contained collagen type IV alpha 1, laminins beta 2 and gamma 1, nidogen 1 and perlecan and underwent changes in composition similar to that of the follicular basal lamina. In conclusion focimatrix and the follicular basal lamina are degraded at ovulation. Individual components are lost at different times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular fragments of cartilage are antigenic and can stimulate an autoimmune response. Oral administration of type II collagen prevents disease onset in animal models of arthritis but the effects of other matrix components have not been reported. We evaluated glycosaminoglycan polypeptides (GAG-P) and matrix proteins (CaP) from cartilage for a) mitigating disease activity in rats with collagen-induced arthritis (CIA) and adjuvant-induced arthritis (AIA) and b) stimulating proteoglycan (PG) synthesis by chondrocytes in-vitro. CIA and AIA were established in Wistar rats using standard methods. Agents were administered orally (10–200 mg/kg), either for seven days prior to disease induction (toleragenic protocol), or continuously for 15 days after injecting the arthritigen (prophylactic protocol). Joint swelling and arthritis scores were determined on day 15. Histological sections of joint tissues were assessed post-necropsy. In chondrocyte cultures, CaP + / − interleukin-1 stimulated PG biosynthesis. CaP was also active in preventing arthritis onset at 3.3, 10 or 20 mg/kg in the rat CIA model using the toleragenic protocol. It was only active at 20 and 200 mg/kg in the CIA prophylactic protocol. GAG-P was active in the CIA toleragenic protocol at 20 mg/kg but chondroitin sulfate and glucosamine hydrochloride or glucosamine sulfate were all inactive. The efficacy of CaP in the rat AIA model was less than in the CIA model. These findings lead us to suggest that oral CaP could be used as a disease-modifying anti-arthritic drug.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A two-stage thermophilic-mesophilic anaerobic digestion pilot-plant was operated solely on waste activated sludge (WAS) from a biological nutrient removal (BNR) plant. The first-stage thermophilic reactor (HRT 2 days) was operated at 47, 54 and 60 degrees C. The second-stage mesophilic digester (HRT 15 days) was held at a constant temperature of 36-37 degrees C. For comparison with a single-stage mesophilic process, the mesophilic digester was also operated separately with an HRT of 17 days and temperature of 36-37 degrees C. The results showed a truly thermophilic stage (60 degrees C) was essential to achieve good WAS degradation. The lower thermophilic temperatures examined did not offer advantages over single-stage mesophilic treatment in terms of COD and VS removal. At a thermophilic temperature of 60 degrees C, the plant achieved 35% VS reduction, representing a 46% increase compared to the single-stage mesophilic digester. This is a significant level of degradation which could make such a process viable in situations where there is no primary sludge generated. The fate of the biologically stored phosphorus in this BNR sludge was also investigated. Over 80% of the incoming phosphorus remained bound up with the solids and was not released into solution during the WAS digestion. Therefore only a small fraction of phosphorus would be recycled to the main treatment plant with the dewatering stream.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anaerobic digestion of lignocellulosic material is carried out effectively in many natural microbial ecosystems including the rumen. A rumen-enhanced anaerobic sequencing batch reactor was used to investigate cellulose degradation to give analysis of overall process stoichiometry and rates of hydrolysis. The reactor achieved VFA production rates of 207-236 mg COD/L/h at a loading rate of 10 g/L/d. Overloading of the reactor resulted in elevated production of propionic acid, and on occasion, the presence of succinic acid. With improvements in mixing and solids wasting, the anaerobic sequencing batch reactor system could enable full-scale application of the process for treatment of cellulosic waste material.