912 resultados para External combustion engines.
Resumo:
The use of the natural gas is growing year after year in the whole world and also in Brazil. It is verified that in the last five years the profile of natural gas consumption reached a great advance and investments had been carried through in this area. In the oil industry, the use of the natural gas for fuel in the drive of engines is usual for a long date. It is also used to put into motion equipment, or still, to generate electric power. Such engines are based on the motor cycle of combustion Otto, who requires a natural gas with well definite specification, conferring characteristic anti-detonating necessary to the equipment performance for projects based on this cycle. In this work, process routes and thermodynamic conditions had been selected and evaluated. Based on simulation assays carried out in commercial simulators the content of the methane index of the effluent gas were evaluated at various ranges of pressure, temperature, flowrate, molecular weight and chemical nature and composition of the absorbent. As final result, it was established a route based on process efficiency, optimized consumption of energy and absorbent. Thereby, it serves as base for the compact equipment conception to be used in locu into the industry for the removal of hydrocarbon from the natural gas produced
Resumo:
The diesel combustion form sulfur oxides that can be discharged into the atmosphere as particulates and primary pollutants, SO2and SO3, causing great damage to the environment and to human health. These products can be transformed into acids in the combustion chamber, causing damage to the engines. The worldwide concern with a clean and healthy environment has led to more restrictive laws and regulations regulating the emission levels of pollutants in the air, establishing sulfur levels increasingly low on fuels. The conventional methods for sulfur removal from diesel are expensive and do not produce a zero-level sulfur fuel. This work aims to develop new methods of removing sulfur from commercial diesel using surfactants and microemulsion systems. Its main purpose is to create new technologies and add economic viability to the process. First, a preliminary study using as extracting agent a Winsor I microemulsion system with dodecyl ammonium chloride (DDACl) and nonyl phenol ethoxylated (RNX95) as surfactant was performed to choose the surfactant. The RNX95 was chosen to be used as surfactant in microemulsioned systems for adsorbent surface modification and as an extracting agent in liquid-liquid extraction. Vermiculite was evaluated as adsorbent. The microemulsion systems applied for vermiculite surface modification were composed by RNX95 (surfactant), n-butanol (cosurfactant), n-hexane (oil phase), and different aqueous phases, including: distilled water (aqueous phase),20ppm CaCl2solution, and 1500ppm CaCl2solution. Batch and column adsorption tests were carried out to estimate the ability of vermiculite to adsorb sulfur from diesel. It was used in the experiments a commercial diesel fuel with 1,233ppm initial sulfur concentration. The batch experiments were performed according to a factorial design (23). Two experimental sets were accomplished: the first one applying 1:2 vermiculite to diesel ratio and the second one using 1:5 vermiculite to diesel ratio. It was evaluated the effects of temperature (25°C and 60°C), concentration of CaCl2in the aqueous phase (20ppm and 1500ppm), and vermiculite granule size (65 and 100 mesh). The experimental response was the ability of vermiculite to adsorb sulfur. The best results for both 1:5 and 1:2 ratios were obtained using 60°C, 1500ppm CaCl2solution, and 65 mesh. The best adsorption capacities for 1:5 ratio and for 1:2 ratio were 4.24 mg sulfur/g adsorbent and 2.87 mg sulfur/g adsorbent, respectively. It was verified that the most significant factor was the concentration of the CaCl2 solution. Liquid-liquid extraction experiments were performed in two and six steps using the same surfactant to diesel ratio. It was obtained 46.8% sulfur removal in two-step experiment and 73.15% in six-step one. An alternative study, for comparison purposes, was made using bentonite and diatomite asadsorbents. The batch experiments were done using microemulsion systems with the same aqueous phases evaluated in vermiculite study and also 20ppm and 1500 ppm BaCl2 solutions. For bentonite, the best adsorption capacity was 7.53mg sulfur/g adsorbent with distilled water as aqueous phase of the microemulsion system and for diatomite the best result was 17.04 mg sulfur/g adsorbent using a 20ppm CaCl2solution. The accomplishment of this study allowed us to conclude that, among the alternatives tested, the adsorption process using adsorbents modified by microemulsion systems was considered the best process for sulfur removal from diesel fuel. The optimization and scale upof the process constitutes a viable alternative to achieve the needs of the market
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
LiCoO2 powders were prepared by combustion synthesis, using metallic nitrates as the oxidant and metal sources and urea as fuel. A small amount of the LiCoO2 phase was obtained directly from the combustion reaction, however, a heat treatment was necessary for the phase crystallization. The heat treatment was performed at the temperature range from 400 up to 700 degreesC for 12 h. The powders were characterized by X-ray diffraction (XRD), X ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and specific surface area values were obtained by BET isotherms. Composite electrodes were prepared using a mixture of LiCoO2, carbon black and poly(vinylidene fluoride) (PVDF) in the 85:10:5% w/w ratio. The electrochemical behavior of these composites was evaluated in ethylene carbonate/dimethylcarbonate solution, using lithium perchlorate as supporting electrolyte. Cyclic voltammograms showed one reversible redox process at 4.0/3.85 V and one irreversible redox process at 3.3 V for the LiCoO2 obtained after a post-heat treatment at 400 and 500 degreesC.Raman spectroscopy showed the possible presence of LiCoO2 with cubic structure for the material obtained at 400 and 500 degreesC. This result is in agreement with X-ray data with structural refinement for the LiCoO2 powders obtained at different temperatures using the Rietveld method. Data from this method showed the coexistence of cubic LiCoO2 (spinel) and rhombohedral (layered) structures when LiCoO2 was obtained at lower temperatures (400 and 500 degreesC). The single rhombohedral structure for LiCoO2 was obtained after post-heat treatment at 600 degreesC. The maximum energy capacity in the first discharge was 136 mA g(-1) for the composite electrode based on LiCoO2 obtained after heat treatment at 700 degreesC. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The paper proposes a framework for the analysis and representation of external systems for online optimisation studies. The basis for this framework is the equivalent OPF (EOPF), an optimisation model obtained by partitioning of the OPF model. The EOPF is mathematically redefined in the paper to accommodate the concept of a buffer zone. The resulting model is more useful for online optimisation, since external information obtained through intercontrol-centre exchange contracts can be used to improve internal control calculation. Numerical results obtained with original studies involving the boundary-matching procedure have provided a conceptual basis for the definition of a buffer zone for optimisation studies with the EOPF. In the proposed framework, the accuracy of the external representation in optimisation studies is evaluated by comparing the controls obtained by an EOPF procedure with those obtained by the reference-optimisation procedure defined in this paper. The framework is then used to evaluate the accuracy of equivalent optimisation studies involving the IEEE 118-bus test system and the Brazilian South Southeast 810-bus system. The results show that the incorporation of a buffer zone improves the external system representation for all optimisation studies performed.
Resumo:
In this paper is proposed the use of biogas generated in the Wastewater Treatment Plant of a Dairy industry. The objective is to apply a thermoeconomic analysis to the supplementary cold water production of an absorption refrigeration system (NH3 + H2O) by the burning of such gas. The exergoeconomic analysis is carried out to allow a comparison between an absorption refrigeration system and of an equivalent compression refrigeration system that uses NH3 as work fluid. The proposed exergoeconomic model uses functional diagrams and allows one to obtain the exergetic incremental functions for each component individually and for the system as a whole. The model minimizes the exergetic manufacturing cost (EMC) which represents the cost of supplementary cold water production at 1degreesC (exergetic base) needed for this dairy's cold storage. As a conclusion, the absorption refrigeration system is better than compression refrigeration system, when the biogas cost is not considered. 2004 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper an artificial neural network (ANN) based methodology is proposed for (a) solving the basic load flow, (b) solving the load flow considering the reactive power limits of generation (PV) buses, (c) determining a good quality load flow starting point for ill-conditioned systems, and (d) computing static external equivalent circuits. An analysis of the input data required as well as the ANN architecture is presented. A multilayer perceptron trained with the Levenberg-Marquardt second order method is used. The proposed methodology was tested with the IEEE 30- and 57-bus, and an ill-conditioned 11-bus system. Normal operating conditions (base case) and several contingency situations including different load and generation scenarios have been considered. Simulation results show the excellent performance of the ANN for solving problems (a)-(d). (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The present investigation reports the synthesis, characterization, and adsorption properties of a new nanomaterial based on organomodified silsesquioxane nanocages. The adsorption isotherms for CuCl,, CoCl2, ZnCl2, NiCl2, and FeCl3 from ethanol solutions were performed by using the batchwise method. The equilibrium condition is reached very quickly (3 min), indicating that the adsorption sites are well exposed. The results obtained in the flow experiments, showed a recovery of ca. 100% of the metal ions adsorbed in a column packed with 2 g of the nanomaterial, using 5 mL of 1.0 mol L-1 HCl solution as eluent. The sorption-desorption of the metal ions made possible the development of a method for preconcentration and determination of metal ions at trace level in commercial ethanol, used as fuel for car engines. The values determined by recommended method for plants 1, 2, and 3 indicated an amount of copper of 51, 60, and 78 mu g L-1, and of iron of 2, 15, and 13 mu g L-1, respectively. These values are very close to those determined by conventional analytical methods. Thus, these similar values demonstrated the accuracy of the determination by recommended method.
Resumo:
Intensive use of machinery and engines burning fuel dumps into the atmosphere huge amounts of carbon dioxide (CO2), causing the intensification of the greenhouse effect. Climate changes that are occurring in the world are directly related to emissions of greenhouse gases, mainly CO2, gases, mainly due to the excessive use of fossil fuels. The search for new technologies to minimize the environmental impacts of this phenomenon has been investigated. Sequestration of CO2 is one of the alternatives that can help minimize greenhouse gas emissions. The CO2 can be captured by the post-combustion technology, by adsorption using adsorbents selective for this purpose. With this objective, were synthesized by hydrothermal method at 100 °C, the type mesoporous materials MCM - 41 and SBA-15. After the synthesis, the materials were submitted to a calcination step and subsequently functionalized with different amines (APTES, MEA, DEA and PEI) through reflux method. The samples functionalized with amines were tested for adsorption of CO2 in order to evaluate their adsorption capacities as well, were subjected to various analyzes of characterization in order to assess the efficiency of the method used for functionalization with amines. The physic-chemical techniques were used: X- ray diffraction (XRD), nitrogen adsorption and desorption (BET/BJH), scanning electron microscopy (SEM), transmission electron microscopy (TEM), CNH Analysis, Thermogravimetry (TG/DTG) and photoelectron spectroscopy X-ray (XPS). The CO2 adsorption experiments were carried out under the following conditions: 100 mg of adsorbent, at 25 °C under a flow of 100 ml/min of CO2, atmospheric pressure and the adsorption variation in time 10-210 min. The X-ray diffraction with the transmission electron micrographs for the samples synthesized and functionalized, MCM-41 and SBA-15 showed characteristic peaks of hexagonal mesoporous structure formation, showing the structure thereof was obtained. The method used was efficient reflux according to XPS and elemental analysis, which showed the presence of amines in the starting materials. The functionalized SBA -15 samples were those that had potential as best adsorbent for CO2 capture when compared with samples of MCM-41, obtaining the maximum adsorption capacity for SBA-15-P sample
Resumo:
The aim of this study was to clinically and radiographically evaluate acute bone shortening followed by gradual lengthening in the treatment of large segmental tibia defects induced in seven clinically normal dogs. A circular external fixator was assembled with one proximal 5/8-circle ring, one middle ring and one distal ring connected with three rods. Thirty per cent of the tibia and fibula were removed in the middle and distal parts of the diaphyses, between the middle and distal rings. Acute bone shortening with compression of proximal and distal segments was performed. A subperiosteal osteotomy was performed between the half-ring and middle ring. Bone distraction started 7 days after surgery; after lengthening, the apparatus was left in place for 14 weeks for consolidation of regenerated bone. The frame was removed at the end of this period, and the dogs observed for four more weeks. Functional results were considered excellent in two, good in three and fair in the other two dogs. Bone regeneration within the distraction gap was obtained 14 weeks after neutral fixation period. We concluded that acute bone shortening followed by gradual lengthening by Ilizarov method can be used to treat extensive tibial defects in dogs, although it presents limb temporary abnormal limb shape and unequal length as early disadvantages.
Resumo:
BACKGROUND: Paracoccidioidomycosis is a systemic mycosis of dermatological interest due to the frequency of cutaneous and mucosal lesions. The involvement of the external genitalia is extremely rare and few cases have been reported.OBJECTIVE: To study the prevalence of external genitalia lesions in paracoccidioidomycosis patients, identify clinical characteristics and compare with what is observed in the specific literature.METHODS: This is a cross-sectional, descriptive study, with focus on paracoccidioiodomycosis patients with external genitalia lesions. The demographic and clinical aspects of cases were compared with what has been reported so far on LILACS, SciELO e MEDLINE data bases.RESULTS: Data of 483 cases of paracoccidioidomycosis were studied in a 42-year period. Six (1.2%) patients showed specific lesions on external genitalia. Five patients were male with mean age of 47.2 years and all of them presented with the chronic multifocal clinical form. Only one, a 15-year-old female patient was observed who showed a subacute clinical form, juvenile type.CONCLUSIONS: Compromise of the genitourinary tract among paracoccidioidomycosis patients is rare and even rarer when only the external genitalia are considered. As observed in the classical picture of paracoccidioidomycosis patients, the male gender and the chronic multifocal clinical form prevailed in the present study.
Resumo:
Background Capsular contracture is the main complication related to breast silicone implants, and its prevention remains a medical challenge. The authors present experimental research examining the effect of external ultrasound on the formation and contracture of peri-implant capsules.Methods In this study, 42 male Wistar rats had a 2-mm smooth surface implant placed in a dorsal submuscular pocket. They then were separated into ultrasound'' and control'' groups that received repeated external applications either with or without the ultrasound power on. Ultrasound applications were given three times a week for a period of 90 days. After that, both groups were housed under the same conditions with no application scheduled. Five animals of each group, killed at 30, 60, 90, and 180 days, had their implants removed along with the capsule, which received a special histologic preparation via annular sectioning that provided wide circumferential observation of the capsular tissue. Sections were stained with hematoxylin/eosin stain, Masson's trichrome stain, and Pricrosirius Red stain for regular microscopic evaluation under normal and polarized light.Results Histologic data showed that capsules from the ultrasound and control groups had statistically significant differences. Ultrasound application developed a capsular architecture similar to that shown within textured silicone implants, and its effect had an early definition with subsequent stabilization.Conclusion The authors conclude that early and repeated external ultrasound application enhances the thickness, cellular count, and vascularity of smooth silicone capsular tissue, whereas it diminishes the pattern of parallel orientation of collagen fibers.
Resumo:
A seven-year-old Quarter Horse had a serious external genitalia trauma with severe swelling of ventrum, penis, prepuce and scrotum after falling over a fence. Appropriated treatment was rapidly started after clinical examination. During recovery period, the spermatogenesis assess by semen evaluation was not possible due to stallion's inability to ejaculate. Therefore, for testicular evaluation fine needle aspiration cytology (FNAC) was performed. The first FNAC showed a deviation of germ cell line towards immature cells, mainly by primary spermatocytes (59.5%) with very few late spermatids and spermatozoa (2.5% each), and an increased Sertoli cells/germ cells ratio (478/100), which characterized testicular degeneration. One month after the first FNAC, the second exam presented a drastic decrease of Sertoli cells/germ cells ratio (7/100) and marked increase of mature cell number, specially by early and late spermatids (50% and 24.5%, respectively). In this case, the results of both FNAC could demonstrate a partial recovery of spermatogenesis activity. Two months later, the stallion had mated two mares successfully and they became pregnant. In conclusion, the adequate treatment allowed a complete recovery of the stallion's reproductive function, and since semen collection was impossible during treatment, testicular FNAC showed to be an efficient diagnostic method for evaluating acute damage in the spermatogenesis.