922 resultados para Expected revenue
Resumo:
Predicting safety on roadways is standard practice for road safety professionals and has a corresponding extensive literature. The majority of safety prediction models are estimated using roadway segment and intersection (microscale) data, while more recently efforts have been undertaken to predict safety at the planning level (macroscale). Safety prediction models typically include roadway, operations, and exposure variables—factors known to affect safety in fundamental ways. Environmental variables, in particular variables attempting to capture the effect of rain on road safety, are difficult to obtain and have rarely been considered. In the few cases weather variables have been included, historical averages rather than actual weather conditions during which crashes are observed have been used. Without the inclusion of weather related variables researchers have had difficulty explaining regional differences in the safety performance of various entities (e.g. intersections, road segments, highways, etc.) As part of the NCHRP 8-44 research effort, researchers developed PLANSAFE, or planning level safety prediction models. These models make use of socio-economic, demographic, and roadway variables for predicting planning level safety. Accounting for regional differences - similar to the experience for microscale safety models - has been problematic during the development of planning level safety prediction models. More specifically, without weather related variables there is an insufficient set of variables for explaining safety differences across regions and states. Furthermore, omitted variable bias resulting from excluding these important variables may adversely impact the coefficients of included variables, thus contributing to difficulty in model interpretation and accuracy. This paper summarizes the results of an effort to include weather related variables, particularly various measures of rainfall, into accident frequency prediction and the prediction of the frequency of fatal and/or injury degree of severity crash models. The purpose of the study was to determine whether these variables do in fact improve overall goodness of fit of the models, whether these variables may explain some or all of observed regional differences, and identifying the estimated effects of rainfall on safety. The models are based on Traffic Analysis Zone level datasets from Michigan, and Pima and Maricopa Counties in Arizona. Numerous rain-related variables were found to be statistically significant, selected rain related variables improved the overall goodness of fit, and inclusion of these variables reduced the portion of the model explained by the constant in the base models without weather variables. Rain tends to diminish safety, as expected, in fairly complex ways, depending on rain frequency and intensity.
Resumo:
Safety at roadway intersections is of significant interest to transportation professionals due to the large number of intersections in transportation networks, the complexity of traffic movements at these locations that leads to large numbers of conflicts, and the wide variety of geometric and operational features that define them. A variety of collision types including head-on, sideswipe, rear-end, and angle crashes occur at intersections. While intersection crash totals may not reveal a site deficiency, over exposure of a specific crash type may reveal otherwise undetected deficiencies. Thus, there is a need to be able to model the expected frequency of crashes by collision type at intersections to enable the detection of problems and the implementation of effective design strategies and countermeasures. Statistically, it is important to consider modeling collision type frequencies simultaneously to account for the possibility of common unobserved factors affecting crash frequencies across crash types. In this paper, a simultaneous equations model of crash frequencies by collision type is developed and presented using crash data for rural intersections in Georgia. The model estimation results support the notion of the presence of significant common unobserved factors across crash types, although the impact of these factors on parameter estimates is found to be rather modest.
Resumo:
In recent years the development and use of crash prediction models for roadway safety analyses have received substantial attention. These models, also known as safety performance functions (SPFs), relate the expected crash frequency of roadway elements (intersections, road segments, on-ramps) to traffic volumes and other geometric and operational characteristics. A commonly practiced approach for applying intersection SPFs is to assume that crash types occur in fixed proportions (e.g., rear-end crashes make up 20% of crashes, angle crashes 35%, and so forth) and then apply these fixed proportions to crash totals to estimate crash frequencies by type. As demonstrated in this paper, such a practice makes questionable assumptions and results in considerable error in estimating crash proportions. Through the use of rudimentary SPFs based solely on the annual average daily traffic (AADT) of major and minor roads, the homogeneity-in-proportions assumption is shown not to hold across AADT, because crash proportions vary as a function of both major and minor road AADT. For example, with minor road AADT of 400 vehicles per day, the proportion of intersecting-direction crashes decreases from about 50% with 2,000 major road AADT to about 15% with 82,000 AADT. Same-direction crashes increase from about 15% to 55% for the same comparison. The homogeneity-in-proportions assumption should be abandoned, and crash type models should be used to predict crash frequency by crash type. SPFs that use additional geometric variables would only exacerbate the problem quantified here. Comparison of models for different crash types using additional geometric variables remains the subject of future research.
Resumo:
Many studies focused on the development of crash prediction models have resulted in aggregate crash prediction models to quantify the safety effects of geometric, traffic, and environmental factors on the expected number of total, fatal, injury, and/or property damage crashes at specific locations. Crash prediction models focused on predicting different crash types, however, have rarely been developed. Crash type models are useful for at least three reasons. The first is motivated by the need to identify sites that are high risk with respect to specific crash types but that may not be revealed through crash totals. Second, countermeasures are likely to affect only a subset of all crashes—usually called target crashes—and so examination of crash types will lead to improved ability to identify effective countermeasures. Finally, there is a priori reason to believe that different crash types (e.g., rear-end, angle, etc.) are associated with road geometry, the environment, and traffic variables in different ways and as a result justify the estimation of individual predictive models. The objectives of this paper are to (1) demonstrate that different crash types are associated to predictor variables in different ways (as theorized) and (2) show that estimation of crash type models may lead to greater insights regarding crash occurrence and countermeasure effectiveness. This paper first describes the estimation results of crash prediction models for angle, head-on, rear-end, sideswipe (same direction and opposite direction), and pedestrian-involved crash types. Serving as a basis for comparison, a crash prediction model is estimated for total crashes. Based on 837 motor vehicle crashes collected on two-lane rural intersections in the state of Georgia, six prediction models are estimated resulting in two Poisson (P) models and four NB (NB) models. The analysis reveals that factors such as the annual average daily traffic, the presence of turning lanes, and the number of driveways have a positive association with each type of crash, whereas median widths and the presence of lighting are negatively associated. For the best fitting models covariates are related to crash types in different ways, suggesting that crash types are associated with different precrash conditions and that modeling total crash frequency may not be helpful for identifying specific countermeasures.
Resumo:
The railway service is now the major transportation means in most of the countries around the world. With the increasing population and expanding commercial and industrial activities, a high quality of railway service is the most desirable. Train service usually varies with the population activities throughout a day and train coordination and service regulation are then expected to meet the daily passengers' demand. Dwell time control at stations and fixed coasting point in an inter-station run are the current practices to regulate train service in most metro railway systems. However, a flexible and efficient train control and operation is not always possible. To minimize energy consumption of train operation and make certain compromises on the train schedule, coast control is an economical approach to balance run-time and energy consumption in railway operation if time is not an important issue, particularly at off-peak hours. The capability to identify the starting point for coasting according to the current traffic conditions provides the necessary flexibility for train operation. This paper presents an application of genetic algorithms (GA) to search for the appropriate coasting point(s) and investigates the possible improvement on fitness of genes. Single and multiple coasting point control with simple GA are developed to attain the solutions and their corresponding train movement is examined. Further, a hierarchical genetic algorithm (HGA) is introduced here to identify the number of coasting points required according to the traffic conditions, and Minimum-Allele-Reserve-Keeper (MARK) is adopted as a genetic operator to achieve fitter solutions.
Resumo:
Demography theory suggests that high gender diversity leads to high turnover. As turnover is costly for organizations, we examined whether HR policies and practices influence the expected gender diversity-turnover relationship. Survey data were collected from 198 HR decision makers at publicly listed organizations. We found that HR policies and practices that are supportive of diversity moderate the gender diversity-turnover relationship, such that high gender diversity leads to low turnover in organizations with many diversity supportive policies and practices. Results suggest that organizations can avoid the negative consequences of high gender diversity by implementing diversity supportive HR polices and practices.
Resumo:
Maintenance activities in a large-scale engineering system are usually scheduled according to the lifetimes of various components in order to ensure the overall reliability of the system. Lifetimes of components can be deduced by the corresponding probability distributions with parameters estimated from past failure data. While failure data of the components is not always readily available, the engineers have to be content with the primitive information from the manufacturers only, such as the mean and standard deviation of lifetime, to plan for the maintenance activities. In this paper, the moment-based piecewise polynomial model (MPPM) are proposed to estimate the parameters of the reliability probability distribution of the products when only the mean and standard deviation of the product lifetime are known. This method employs a group of polynomial functions to estimate the two parameters of the Weibull Distribution according to the mathematical relationship between the shape parameter of two-parameters Weibull Distribution and the ratio of mean and standard deviation. Tests are carried out to evaluate the validity and accuracy of the proposed methods with discussions on its suitability of applications. The proposed method is particularly useful for reliability-critical systems, such as railway and power systems, in which the maintenance activities are scheduled according to the expected lifetimes of the system components.
Resumo:
This paper proposes a simple variation of the Allingham and Sandmo (1972) construct and integrates it to a dynamic general equilibrium framework with heterogeneous agents. We study an overlapping generations framework i n which agents must initially decide whether to evade taxes or not. In the event they decide to evade, they then have to decide the extent of income or wealth they wish to under-report. We find that in comparison with the basic approach, the ‘evade or not’ choice drastically reduced the extent of evasion in the economy. This outcome is the result of an anomaly intrinsic to the basic Allingham and Sandmo version of the model, which makes the evade-or-not extension a more suitable approach to modelling the issue. We also find that the basic model, and the model with and ‘evade-or-not’ choice have strikingly different political economy implications, , which suggest fruitful avenues of empirical research.
Resumo:
Background: Childhood undernutrition and mortality are high in Nepal, and therefore interventions on infant and young child feeding practices deserve high priority. Objective. To estimate infant and young child feeding indicators and the determinants of selected feeding practices. Methods: The sample consisted of 1,906 children aged 0 to 23 months from the Demographic and Health Survey 2006. Selected indicators were examined against a set of variables using univariate and multivariate analyses. Results. Breastfeeding was initiated within the first hour after birth in 35.4% of children, 99.5% were ever breastfed, 98.1% were currently breastfed, and 3.5% were bottle-fed. The rate of exclusive breastfeeding among infants under 6 months of age was 53.1%, and the rate of timely complementary feeding among those 6 to 9 months of age was 74.7%. Mothers who made antenatal clinic visits were at a higher risk for no exclusive breastfeeding than those who made no visits. Mothers who lived in the mountains were more likely to initiate breastfeeding within 1 hour after birth and to introduce complementary feeding at 6 to 9 months of age, but less likely to exclusively breastfeed. Cesarean deliveries were associated with delay in timely initiation of breastfeeding. Higher rates of complementary feeding at 6 to 9 months were also associated with mothers with better education and those above 35 years of age. Risk factors for bottle-feeding included living in urban areas and births attended by trained health personnel. Conclusions: Most breastfeeding indicators in Nepal are below the expected levels to achieve a substantial reduction in child mortality. Breastfeeding promotion strategies should specifically target mothers who have more contact with the health care delivery system, while programs targeting the entire community should be continued.
Resumo:
Background: Information on infant and young child feeding is widely available in Demographic and Health Surveys and National Family Health Surveys for countries in South Asia; however, infant and young child feeding indicators from these surveys have not been compared between countries in the region. Objective. To compare the key indicators of breastfeeding and complementary feeding and their determinants in children under 24 months of age between four South Asian countries. Methods: We selected data sets from the Bangladesh Demographic and Health Survey 2004, the India National Family Health Survey (NFHS-03) 2005–06, the Nepal Demographic and Health Survey 2006, and the Sri Lanka 2000 Demographic and Health Survey. Infant feeding indicators were estimated according to the key World Health Organization indicators. Results: Exclusive breastfeeding rates were 42.5% in Bangladesh, 46.4% in India, and 53.1% in Nepal. The rate of full breastfeeding ranged between 60.6% and 73.9%. There were no factors consistently associated with the rate of no exclusive breastfeeding across countries. Utilization of health services (more antenatal clinic visits) was associated with higher rates of exclusive breastfeeding in India but lower rates in Nepal. Delivery at a health facility was a negative determinant of exclusive breastfeeding in India. Postnatal contacts by Public Health Midwives were a positive factor in Sri Lanka. A considerable proportion of infants under 6 months of age had been given plain water, juices, or other nonmilk liquids. The rate of timely first suckling ranged from 23.5% in India to 56.3% in Sri Lanka. Delivery by cesarean section was found to be a consistent negative factor that delayed initiation of breastfeeding. Nepal reported the lowest bottle-feeding rate of 3.5%. Socioeconomically privileged mothers were found to have higher bottlefeeding rates in most countries. Conclusions: Infant and young child feeding practices in the South Asia region have not reached the expected levels that are required to achieve a substantial reduction in child mortality. The countries with lower rates of exclusive breastfeeding have a great potential to improve the rates by preventing infants from receiving water and water-based or other nonmilk liquids during the first 6 months of life.
Resumo:
In an open railway access market price negotiation, it is feasible to achieve higher cost recovery by applying the principles of price discrimination. The price negotiation can be modeled as an optimization problem of revenue intake. In this paper, we present the pricing negotiation based on reinforcement learning model. A negotiated-price setting technique based on agent learning is introduced, and the feasible applications of the proposed method for open railway access market simulation are discussed.
Resumo:
A schedule coordination problem involving two train services provided by different operators is modeled as an optimization of revenue intake. The coordination is achieved through the adjustment of commencement times of the train services by negotiation. The problem is subject to constraints regarding to passenger demands and idle costs of rolling-stocks from both operators. This paper models the operators as software agents having the flexibility to incorporate one of the two (and potentially more) proposed negotiation strategies. Empirical results show that agents employing different combination of strategies have significant impact on the quality of solution and negotiation time.
Resumo:
Many infrastructure and necessity systems such as electricity and telecommunication in Europe and the Northern America were used to be operated as monopolies, if not state-owned. However, they have now been disintegrated into a group of smaller companies managed by different stakeholders. Railways are no exceptions. Since the early 1980s, there have been reforms in the shape of restructuring of the national railways in different parts of the world. Continuous refinements are still conducted to allow better utilisation of railway resources and quality of service. There has been a growing interest for the industry to understand the impacts of these reforms on the operation efficiency and constraints. A number of post-evaluations have been conducted by analysing the performance of the stakeholders on their profits (Crompton and Jupe 2003), quality of train service (Shaw 2001) and engineering operations (Watson 2001). Results from these studies are valuable for future improvement in the system, followed by a new cycle of post-evaluations. However, direct implementation of these changes is often costly and the consequences take a long period of time (e.g. years) to surface. With the advance of fast computing technologies, computer simulation is a cost-effective means to evaluate a hypothetical change in a system prior to actual implementation. For example, simulation suites have been developed to study a variety of traffic control strategies according to sophisticated models of train dynamics, traction and power systems (Goodman, Siu and Ho 1998, Ho and Yeung 2001). Unfortunately, under the restructured railway environment, it is by no means easy to model the complex behaviour of the stakeholders and the interactions between them. Multi-agent system (MAS) is a recently developed modelling technique which may be useful in assisting the railway industry to conduct simulations on the restructured railway system. In MAS, a real-world entity is modelled as a software agent that is autonomous, reactive to changes, able to initiate proactive actions and social communicative acts. It has been applied in the areas of supply-chain management processes (García-Flores, Wang and Goltz 2000, Jennings et al. 2000a, b) and e-commerce activities (Au, Ngai and Parameswaran 2003, Liu and You 2003), in which the objectives and behaviour of the buyers and sellers are captured by software agents. It is therefore beneficial to investigate the suitability or feasibility of applying agent modelling in railways and the extent to which it might help in developing better resource management strategies. This paper sets out to examine the benefits of using MAS to model the resource management process in railways. Section 2 first describes the business environment after the railway 2 Modelling issues on the railway resource management process using MAS reforms. Then the problems emerge from the restructuring process are identified in section 3. Section 4 describes the realisation of a MAS for railway resource management under the restructured scheme and the feasible studies expected from the model.
Resumo:
Purpose: To compare subjective blur limits for cylinder and defocus. ---------- Method: Blur was induced with a deformable, adaptive-optics mirror when either the subjects’ own astigmatisms were corrected or when both astigmatisms and higher-order aberrations were corrected. Subjects were cyclopleged and had 5 mm artificial pupils. Black letter targets (0.1, 0.35 and 0.6 logMAR) were presented on white backgrounds. Results: For ten subjects, blur limits were approximately 50% greater for cylinder than for defocus (in diopters). While there were considerable effects of axis for individuals, overall this was not strong, with the 0° (or 180°) axis having about 20% greater limits than oblique axes. In a second experiment with text (equivalent in angle to N10 print at 40 cm distance), cylinder blur limits for 6 subjects were approximately 30% greater than those for defocus; this percentage was slightly smaller than for the three letters. Blur limits of the text were intermediate between those of 0.35 logMAR and 0.6 logMAR letters. Extensive blur limit measurements for one subject with single letters did not show expected interactions between target detail orientation and cylinder axis. ---------- Conclusion: Subjective blur limits for cylinder are 30%-50% greater than those for defocus, with the overall influence of cylinder axis being 20%.
Resumo:
Burkholderia pseudomallei, the causative agent of melioidosis is associated with soil. This study used a geographic information system (GIS) to determine the spatial distribution of clinical cases of melioidosis in the endemic suburban region of Townsville in Australia. A total of 65 cases over the period 1996–2008 were plotted using residential address. Two distinct groupings were found. One was around the base of a hill in the city centre and the other followed the old course of a major waterway in the region. Both groups (accounting for 43 of the 65 cases examined) are in areas expected to have particularly wet topsoils following intense rainfall, due to soil type or landscape position.