712 resultados para Expanded critical incident approach
Resumo:
Adsorption of nitrogen, argon, methane, and carbon dioxide on activated carbon Norit R1 over a wide range of pressure (up to 50 MPa) at temperatures from 298 to 343 K (supercritical conditions) is analyzed by means of the density functional theory modified by incorporating the Bender equation of state, which describes the bulk phase properties with very high accuracy. It has allowed us to precisely describe the experimental data of carbon dioxide adsorption slightly above and below its critical temperatures. The pore size distribution (PSD) obtained with supercritical gases at ambient temperatures compares reasonably well with the PSD obtained with subcritical nitrogen at 77 K. Our approach does not require the skeletal density of activated carbon from helium adsorption measurements to calculate excess adsorption. Instead, this density is treated as a fitting parameter, and in all cases its values are found to fall into a very narrow range close to 2000 kg/m(3). It was shown that in the case of high-pressure adsorption of supercritical gases the PSD could be reliably obtained for the range of pore width between 0.6 and 3 run. All wider pores can be reliably characterized only in terms of surface area as their corresponding excess local isotherms are the same over a practical range of pressure.
Resumo:
Queensland fruit fly, Bactrocera (Dacus) tryoni (QFF) is arguably the most costly horticultural insect pest in Australia. Despite this, no model is available to describe its population dynamics and aid in its management. This paper describes a cohort-based model of the population dynamics of the Queensland fruit fly. The model is primarily driven by weather variables, and so can be used at any location where appropriate meteorological data are available. In the model, the life cycle is divided into a number of discreet stages to allow physiological processes to be defined as accurately as possible. Eggs develop and hatch into larvae, which develop into pupae, which emerge as either teneral females or males. Both females and males can enter reproductive and over-wintering life stages, and there is a trapped male life stage to allow model predictions to be compared with trap catch data. All development rates are temperature-dependent. Daily mortality rates are temperature-dependent, but may also be influenced by moisture, density of larvae in fruit, fruit suitability, and age. Eggs, larvae and pupae all have constant establishment mortalities, causing a defined proportion of individuals to die upon entering that life stage. Transfer from one immature stage to the next is based on physiological age. In the adult life stages, transfer between stages may require additional and/or alternative functions. Maximum fecundity is 1400 eggs per female per day, and maximum daily oviposition rate is 80 eggs/female per day. The actual number of eggs laid by a female on any given day is restricted by temperature, density of larva in fruit, suitability of fruit for oviposition, and female activity. Activity of reproductive females and males, which affects reproduction and trapping, decreases with rainfall. Trapping of reproductive males is determined by activity, temperature and the proportion of males in the active population. Limitations of the model are discussed. Despite these, the model provides a useful agreement with trap catch data, and allows key areas for future research to be identified. These critical gaps in the current state of knowledge exist despite over 50 years of research on this key pest. By explicitly attempting to model the population dynamics of this pest we have clearly identified the research areas that must be addressed before progress can be made in developing the model into an operational tool for the management of Queensland fruit fly. (C) 2003 Published by Elsevier B.V.
Resumo:
A thermodynamic analysis of nitrogen adsorption in cylindrical pores of MCM-41 and SBA-15 samples at 77 K is presented within the framework of the Broekhoff and de Boer (BdB) theory. We accounted for the effect of the solid surface curvature on the potential exerted by the pore walls. The developed model is in quantitative agreement with the non-local density functional theory (NLDFT) for pores larger than 2 tun. This modified BdB theory accounting for the Curvature Dependent Potential (CDP-BdB) was applied to determine the pore size distribution (PSD) of a number of MCM-41 and SBA-15 samples on the basis of matching the equilibrium theoretical isotherm against the adsorption branch of the experimental isotherm. In all cases investigated the PSDs determined with the new approach are very similar to those determined with the non-local density functional theory also using the same basis of matching of theoretical isotherm against the experimental adsorption branch. The developed continuum theory is very simple in its utilization, suggesting that CDP-BdB could be used as an alternative tool to obtain PSD for mesoporous solids from the analysis of adsorption branch of adsorption isotherms of any sub-critical fluids.
Resumo:
Although safety is recognized as a critical issue in functional capacity evaluations (FCEs), it has rarely been investigated. This paper reports on the findings of a study which examined safety aspects of a new approach to FCE. Fourteen rehabilitation clients with chronic back pain participated in the study. Aspects examined included the pre-FCE screening procedures, the monitoring of performance and safety during the FCE, and the end of FCE measures and follow-up procedures. Support was found for the screening procedures of the approach, particularly blood pressure measurement, and for the combined approach to monitoring of the persons performance from biomechanical, physiological and psychophysical perspectives. Issues for FCE safety in general are identified and discussed, including the importance of screening procedures to determine readiness for FCEs and the issue of load handling in FCEs, especially in relation to clients with chronic back pain.
Resumo:
Equilibrium adsorption and desorption in mesoporous adsorbents is considered on the basis of rigorous thermodynamic analysis, in which the curvature-dependent solid-fluid potential and the compressibility of the adsorbed phase are accounted for. The compressibility of the adsorbed phase is considered for the first time in the literature in the framework of a rigorous thermodynamic approach. Our model is a further development of continuum thermodynamic approaches proposed by Derjaguin and Broekhoff and de Boer, and it is based on a reference isotherm of a non-porous material having the same chemical structure as that of the pore wall. In this improved thermodynamic model, we incorporated a prescription for transforming the solid-fluid potential exerted by the flat reference surface to the potential inside cylindrical and spherical pores. We relax the assumption that the adsorbed film density is constant and equal to that of the saturated liquid. Instead, the density of the adsorbed fluid is allowed to vary over the adsorbed film thickness and is calculated by an equation of state. As a result, the model is capable to describe the adsorption-desorption reversibility in cylindrical pores having diameter less than 2 nm. The generalized thermodynamic model may be applied to the pore size characterization of mesoporous materials instead of much more time-consuming molecular approaches. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The ability to identify and manipulate stem cells has been a significant advancement in regenerative medicine and has contributed to the development of tissue engineering-based clinical therapies. Difficulties associated with achieving predictable periodontal regeneration, means that novel techniques such as tissue engineering need to be developed in order to regenerate the extensive soft and hard tissue destruction that results from periodontitis. One of the critical requirements for a tissue engineering approach is the delivery of ex vivo expanded progenitor populations or the mobilization of endogenous progenitor cells capable of proliferating and differentiating into the required tissues. By definition, stem cells fulfill these requirements and the recent identification of stem cells within the periodontal ligament represents a significant development in the progress toward predictable periodontal regeneration. In order to explore the importance of stem cells in periodontal wound healing and regeneration, this review will examine contemporary concepts in stem cell biology, the role of periodontal ligament progenitor cells in the regenerative process, recent developments in identifying periodontal stem cells and the clinical implications of these findings.
Resumo:
This paper presents a review of modelling and control of biological nutrient removal (BNR)-activated sludge processes for wastewater treatment using distributed parameter models described by partial differential equations (PDE). Numerical methods for solution to the BNR-activated sludge process dynamics are reviewed and these include method of lines, global orthogonal collocation and orthogonal collocation on finite elements. Fundamental techniques and conceptual advances of the distributed parameter approach to the dynamics and control of activated sludge processes are briefly described. A critical analysis on the advantages of the distributed parameter approach over the conventional modelling strategy in this paper shows that the activated sludge process is more adequately described by the former and the method is recommended for application to the wastewater industry (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
We present existence results for a Neumann problem involving critical Sobolev nonlinearities both on the right hand side of the equation and at the boundary condition.. Positive solutions are obtained through constrained minimization on the Nehari manifold. Our approach is based on the concentration 'compactness principle of P. L. Lions and M. Struwe.
Resumo:
Although the current level of organic production in industrialised countries amounts to little more than 1-2 percent, it is recognised that one of the major issues shaping agricultural output over the next several decades will be the demand for organic produce (Dixon et al. 2001). In Australia, the issues of healthy food and environmental concern contribute to increasing demand and market volumes for organic produce. However, in Indonesia, using more economical inputs for organic production is a supply-side factor driving organic production. For individual growers and processors, conversion from conventional to organic agriculture is often a challenging step, entailing a thorough revision of established practices and heightened market insecurity. This paper examines the potential for a systems approach to the analysis of the conversion process, to yield insights for household and community decisions. A framework for applying farming systems research to investigate the benefits of organic production in both Australia and Indonesia is discussed. The framework incorporates scope for farmer participation, crucial to the understanding of farming systems; analysis of production; and relationships to resources, technologies, markets, services, policies and institutions in their local cultural context. A systems approach offers the potential to internalise the external effects that may be constraining decisions to convert to organic production, and for the design of decision-making tools to assist households and the community. Systems models can guide policy design and serve as a mechanism for predicting the impact of changes to the policy and market environments. The increasing emphasis of farming systems research on community and environment in recent years is in keeping with the proposed application to organic production, processing and marketing issues. The approach will also facilitate the analysis of critical aspects of the Australian production, marketing and policy environment, and the investigation of these same features in an Indonesian context.
Resumo:
We determine the critical noise level for decoding low density parity check error correcting codes based on the magnetization enumerator , rather than on the weight enumerator employed in the information theory literature. The interpretation of our method is appealingly simple, and the relation between the different decoding schemes such as typical pairs decoding, MAP, and finite temperature decoding (MPM) becomes clear. In addition, our analysis provides an explanation for the difference in performance between MN and Gallager codes. Our results are more optimistic than those derived via the methods of information theory and are in excellent agreement with recent results from another statistical physics approach.
Resumo:
We propose a method based on the magnetization enumerator to determine the critical noise level for Gallager type low density parity check error correcting codes (LDPC). Our method provides an appealingly simple interpretation to the relation between different decoding schemes, and provides more optimistic critical noise levels than those reported in the information theory literature.
Resumo:
This paper departs from this point to consider whether and how crisis thinking contributes to practices of affirmative critique and transformative social action in late-capitalist societies. I argue that different deployments of crisis thinking have different ‘affect-effects’ and consequences for ethical and political practice. Some work to mobilize political action through articulating a politics of fear, assuming that people take most responsibility for the future when they fear the alternatives. Other forms of crisis thinking work to heighten critical awareness by disrupting existential certainty, asserting an ‘ethics of ambiguity’ which assumes that the continuous production of uncertain futures is a fundamental part of the human condition (de Beauvoir, 2000). In this paper, I hope to illustrate that the first deployment of crisis thinking can easily justify the closing down of political debate, discouraging radical experimentation and critique for the sake of resolving problems in a timely and decisive way. The second approach to crisis thinking, on the other hand, has greater potential to enable intellectual and political alterity in everyday life—but one that poses considerable challenges for our understandings of and responses to climate change...
Resumo:
In the last two decades there have been substantial developments in the mathematical theory of inverse optimization problems, and their applications have expanded greatly. In parallel, time series analysis and forecasting have become increasingly important in various fields of research such as data mining, economics, business, engineering, medicine, politics, and many others. Despite the large uses of linear programming in forecasting models there is no a single application of inverse optimization reported in the forecasting literature when the time series data is available. Thus the goal of this paper is to introduce inverse optimization into forecasting field, and to provide a streamlined approach to time series analysis and forecasting using inverse linear programming. An application has been used to demonstrate the use of inverse forecasting developed in this study. © 2007 Elsevier Ltd. All rights reserved.
Resumo:
Based on Goffman’s definition that frames are general ‘schemata of interpretation’ that people use to ‘locate, perceive, identify, and label’, other scholars have used the concept in a more specific way to analyze media coverage. Frames are used in the sense of organizing devices that allow journalists to select and emphasise topics, to decide ‘what matters’ (Gitlin 1980). Gamson and Modigliani (1989) consider frames as being embedded within ‘media packages’ that can be seen as ‘giving meaning’ to an issue. According to Entman (1993), framing comprises a combination of different activities such as: problem definition, causal interpretation, moral evaluation, and/or treatment recommendation for the item described. Previous research has analysed climate change with the purpose of testing Downs’s model of the issue attention cycle (Trumbo 1996), to uncover media biases in the US press (Boykoff and Boykoff 2004), to highlight differences between nations (Brossard et al. 2004; Grundmann 2007) or to analyze cultural reconstructions of scientific knowledge (Carvalho and Burgess 2005). In this paper we shall present data from a corpus linguistics-based approach. We will be drawing on results of a pilot study conducted in Spring 2008 based on the Nexis news media archive. Based on comparative data from the US, the UK, France and Germany, we aim to show how the climate change issue has been framed differently in these countries and how this framing indicates differences in national climate change policies.