972 resultados para Exercise order


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diabetic macular edema (DME) is one of the most common causes of visual loss among diabetes mellitus patients. Early detection and successive treatment may improve the visual acuity. DME is mainly graded into non-clinically significant macular edema (NCSME) and clinically significant macular edema according to the location of hard exudates in the macula region. DME can be identified by manual examination of fundus images. It is laborious and resource intensive. Hence, in this work, automated grading of DME is proposed using higher-order spectra (HOS) of Radon transform projections of the fundus images. We have used third-order cumulants and bispectrum magnitude, in this work, as features, and compared their performance. They can capture subtle changes in the fundus image. Spectral regression discriminant analysis (SRDA) reduces feature dimension, and minimum redundancy maximum relevance method is used to rank the significant SRDA components. Ranked features are fed to various supervised classifiers, viz. Naive Bayes, AdaBoost and support vector machine, to discriminate No DME, NCSME and clinically significant macular edema classes. The performance of our system is evaluated using the publicly available MESSIDOR dataset (300 images) and also verified with a local dataset (300 images). Our results show that HOS cumulants and bispectrum magnitude obtained an average accuracy of 95.56 and 94.39 % for MESSIDOR dataset and 95.93 and 93.33 % for local dataset, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hormesis enco 16 mpasses the notion that low levels of stress stimulate or upregulate 17 existing cellular and molecular pathways that improve the capacity of cells and organisms to 18 withstand greater stress. This notion underlies much of what we know about how exercise 19 conditions the body and induces long-term adaptations. During exercise, the body is 20 exposed to various forms of stress, including thermal, metabolic, hypoxic, oxidative, and 21 mechanical stress. These stressors activate biochemical messengers, which in turn activate 22 various signaling pathways that regulate gene expression and adaptive responses. 23 Historically, antioxidant supplements, nonsteroidal anti-inflammatory drugs, and 24 cryotherapy have been favored to attenuate or counteract exercise-induced oxidative stress 25 and inflammation. However, reactive oxygen species and inflammatory mediators are key 26 signaling molecules in muscle, and such strategies may mitigate adaptations to exercise. 27 Conversely, withholding dietary carbohydrate and restricting muscle blood flow during 28 exercise may augment adaptations to exercise. In this review article, we combine, integrate, 29 and apply knowledge about the fundamental mechanisms of exercise adaptation. We also 30 critically evaluate the rationale for using interventions that target these mechanisms under 31 the overarching concept of hormesis. There is currently insufficient evidence to establish 32 whether these treatments exert dose-dependent effects on muscle adaptation. However, 33 there appears to be some dissociation between the biochemical/molecular effects and 34 functional/performance outcomes of some of these treatments. Although several of these 35 treatments influence common kinases, transcription factors and proteins, it remains to be 36 determined if these interventions complement or negate each other, and whether such 37 effects are strong enough to influence adaptations to exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A two-dimensional variable-order fractional nonlinear reaction-diffusion model is considered. A second-order spatial accurate semi-implicit alternating direction method for a two-dimensional variable-order fractional nonlinear reaction-diffusion model is proposed. Stability and convergence of the semi-implicit alternating direct method are established. Finally, some numerical examples are given to support our theoretical analysis. These numerical techniques can be used to simulate a two-dimensional variable order fractional FitzHugh-Nagumo model in a rectangular domain. This type of model can be used to describe how electrical currents flow through the heart, controlling its contractions, and are used to ascertain the effects of certain drugs designed to treat arrhythmia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increased concentrations of biomarkers reflecting myocardial stress such as cardiac troponin I and T and brain natriuretic peptide (BNP) have been observed following strenuous, long-lasting endurance exercise. The pathophysiological mechanisms are still not fully elucidated and the interpretations of increased post-exercise concentrations range from (i) evidence for exercise-induced myocardial damage to (ii) non-relevant spurious troponin elevations, presumably caused by assay imprecision or heterophilic antibodies. Several lines of evidence suggest that inflammatory processes or oxidative stress could be involved in the rise of NT-proBNP and Troponin observed in critically ill patients with sepsis or burn injury. We tested the hypothesis that inflammatory or oxidative stress is also responsible for exercise-induced cardiomyocyte strain in a large cohort of triathletes following an Ironman triathlon. However, the post-race increase in cardiac troponin T and NT-proBNP was not associated with several markers of exercise-induced inflammation, oxidative stress or antioxidant vitamins. Therefore, we clearly need more studies with other inflammatory markers and different designs to elucidate the scientific background for increases in myocardial stress markers following strenuous endurance events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Both a systemic inflammatory response as well as DNA damage has been observed following exhaustive endurance exercise. Hypothetically, exercise-induced DNA damage might either be a consequence of inflammatory processes or causally involved in inflammation and immunological alterations after strenuous prolonged exercise (e.g. by inducing lymphocyte apoptosis and lymphocytopenia). Nevertheless, up to now only few studies have addressed this issue and there is hardly any evidence regarding a direct relationship between DNA or chromosomal damage and inflammatory responses in the context of exercise. The most conclusive picture that emerges from available data is that reactive oxygen and nitrogen species (RONS) appear to be the key effectors which link inflammation with DNA damage. Considering the time-courses of inflammatory and oxidative stress responses on the one hand and DNA effects on the other the lack of correlations between these responses might also be explained by too short observation periods. This review summarizes and discusses the recent findings on this topic. Furthermore, data from our own study are presented that aimed to verify potential associations between several endpoints of genome stability and inflammatory, immune-endocrine and muscle damage parameters in competitors of an Ironman triathlon until 19 days into recovery. The current results indicate that DNA effects in lymphocytes are not responsible for exercise-induced inflammatory responses. Furthermore, this investigation shows that inflammatory processes, vice versa, do not promote DNA damage, neither directly nor via an increased formation of RONS derived from inflammatory cells. Oxidative DNA damage might have been counteracted by training- and exercise-induced antioxidant responses. However, further studies are needed that combine advanced -omics based techniques (transcriptomics, proteomics) with state-of-the-art biochemical biomarkers to gain more insights into the underlying mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antioxidant requirements have neither been defined for endurance nor been defined for ultra-endurance athletes. To verify whether an acute bout of ultra-endurance exercise modifies the need for nutritive antioxidants, we aimed (1) to investigate the changes of endogenous and exogenous antioxidants in response to an Ironman triathlon; (2) to particularise the relevance of antioxidant responses to the indices of oxidatively damaged blood lipids, blood cell compounds and lymphocyte DNA and (3) to examine whether potential time-points of increased susceptibility to oxidative damage are associated with alterations in the antioxidant status. Blood that was collected from forty-two well-trained male athletes 2 d pre-race, immediately post-race, and 1, 5 and 19 d later was sampled. The key findings of the present study are as follows: (1) Immediately post-race, vitamin C, alpha-tocopherol, and levels of the Trolox equivalent antioxidant capacity, the ferric reducing ability of plasma and the oxygen radical absorbance capacity (ORAC) assays increased significantly. Exercise-induced changes in the plasma antioxidant capacity were associated with changes in uric acid, bilirubin and vitamin C. (2) Significant inverse correlations between ORAC levels and indices of oxidatively damaged DNA immediately and 1 d post-race suggest a protective role of the acute antioxidant responses in DNA stability. (3) Significant decreases in carotenoids and gamma-tocopherol 1 d post-race indicate that the antioxidant intake during the first 24 h of recovery following an acute ultra-endurance exercise requires specific attention. Furthermore, the present study illustrates the importance of a diversified and well-balanced diet to maintain a physiological antioxidant status in ultra-endurance athletes in reference to recommendations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is commonly accepted that regular moderate intensity physical activity reduces the risk of developing many diseases. Counter intuitively, however, evidence also exists for oxidative stress resulting from acute and strenuous exercise. Enhanced formation of reactive oxygen and nitrogen species may lead to oxidatively modified lipids, proteins and nucleic acids and possibly disease. Currently, only a few studies have investigated the influence of exercise on DNA stability and damage with conflicting results, small study groups and the use of different sample matrices or methods and result units. This is the first review to address the effect of exercise of various intensities and durations on DNA stability, focusing on human population studies. Furthermore, this article describes the principles and limitations of commonly used methods for the assessment of oxidatively modified DNA and DNA stability. This review is structured according to the type of exercise conducted (field or laboratory based) and the intensity performed (i.e. competitive ultra/endurance exercise or maximal tests until exhaustion). The findings presented here suggest that competitive ultra-endurance exercise (>4h) does not induce persistent DNA damage. However, when considering the effects of endurance exercise (<4h), no clear conclusions could be drawn. Laboratory studies have shown equivocal results (increased or no oxidative stress) after endurance or exhaustive exercise. To clarify which components of exercise participation (i.e. duration, intensity and training status of subjects) have an impact on DNA stability and damage, additional carefully designed studies combining the measurement of DNA damage, gene expression and DNA repair mechanisms before, during and after exercise of differing intensities and durations are required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic diseases are a leading cause of death and disability, largely attributable to modifiable lifestyle risk factors. Many midlife Australian are getting insufficient physical activity for health and face a range of barriers to exercise. Results of this study provide evidence that benefits and barriers are an important predictor of exercise behaviour in midlife women and, that a 12 week nurse led health promotion program can effectively promote benefits and increase physical activity. This study provides evidence about benefits and barriers to exercise that will inform health promotion practice for chronic disease risk factor reduction in midlife women.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the results of the latest Excellence in Research Australia (ERA) exercise come closer to being announced, universities around Australia are holding their collective breaths. The ERA claims to be an assessment of research strengths and quality at Australian universities. While it is not supposed to produce a set of league tables, ultimately that is what tends to happen...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The improved treatment protocols and subsequent improved survival rates amongst childhood cancer patients has shifted the focus towards the long-term consequences arising from cancer treatment. Children who have completed cancer treatment are at a greater risk of delayed development, diminished functioning, disability, compromised fundamental movement skill (FMS) attainment and long term chronic health conditions. The aim of the study was to compare FMS of childhood cancer patients with an aged matched healthy reference group. Methods Pediatric cancer patients aged 5-8 years of age (n=26; median age 6.91 years), who completed cancer treatment (<5 years) at the Sydney Children’s Hospital were assessed performing 7 key FMS; sprint, side-gallop, vertical-jump, catch, over-arm throw, kick and leap. Results were compared to the reference group (n=430; 6.56 years). Results Childhood cancer patients scored significantly lower on 3 out of 7 FMS tests when compared to the reference group. These results equated to a significantly lower overall score for FMS. Conclusion This study highlighted the significant deficits in FMS within pediatric patients having completed cancer treatment. In order to reduce the occurrence of significant FMS deficits in this population, FMS interventions maybe warranted to assist in recovery from childhood cancer, prevent late effects and improve the quality of life in survivors of childhood cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective The objectives of this cross-sectional, analytical inference analysis were to compare shoulder muscle activation at arm elevations of 0° to 90° through different movement planes and speeds during in-water and dry-land exercise and to extrapolate this information to a clinical rehabilitation model. Methods Six muscles of right-handed adult subjects (n = 16; males/females: 50%; age: 26.1 ± 4.5 years) were examined with surface electromyography during arm elevation in water and on dry land. Participants randomly performed 3 elevation movements (flexion, abduction, and scaption) through 0° to 90°. Three movement speeds were used for each movement as determined by a metronome (30°/sec, 45°/sec, and 90°/sec). Dry-land maximal voluntary contraction tests were used to determine movement normalization. Results Muscle activity levels were significantly lower in water compared with dry land at 30°/sec and 45°/sec but significantly higher at 90°/sec. This sequential progressive activation with increased movement speed was proportionally higher on transition from gravity-based on-land activity to water-based isokinetic resistance. The pectoralis major and latissimus dorsi muscles showed higher activity during abduction and scaption. Conclusions These findings on muscle activation suggest protocols in which active flexion is introduced first at low speeds (30°/sec) in water, then at medium speeds (45°/sec) in water or on dry land, and finally at high speeds (90°/sec) on dry land before in water. Abduction requires higher stabilization, necessitating its introduction after flexion, with scaption introduced last. This model of progressive sequential movement ensures that early active motion and then stabilization are appropriately introduced. This should reduce rehabilitation time and improve therapeutic goals without compromising patient safety or introducing inappropriate muscle recruitment or movement speed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Aquatic exercise has been widely used for rehabilitation and functional recovery due to its physical and physiological benefits. However, there is a high variability in reporting on the muscle activity from surface electromyographic (sEMG) signals. The aim of this study is to present an updated review of the literature on the state of the art of muscle activity recorded using sEMG during activities and exercise performed by humans in water. Methods A literature search was performed to identify studies of aquatic exercise movement. Results Twenty-one studies were selected for critical appraisal. Sample size, functional tasks analyzed, and muscles recorded were studied for each paper. The clinical contribution of the paper was evaluated. Conclusions Muscle activity tends to be lower in water-based compared to land-based activity; however more research is needed to understand why. Approaches from basic and applied sciences could support the understanding of relevant aspects for clinical practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-motorised underwater treadmills are commonly used in fitness activities. However, no studies have examined physiological and biomechanical responses of walking on non-motorised treadmills at different intensities and depths. Fifteen middle-aged healthy women underwent two underwater walking tests at two different depths, immersed either up to the xiphoid process (deep water) or the iliac crest (shallow water), at 100, 110, 120, 130 step-per-minute (spm). Oxygen consumption (VO2), heart rate (HR), blood lactate concentration, perceived exertion and step length were determined. Compared to deep water, walking in shallow water exhibited, at all intensities, significantly higher VO2 (+13.5%, on average) and HR (+8.1%, on average) responses. Water depth did not influence lactate concentration, whereas perceived exertion was higher in shallow compared to deep water, solely at 120 (+40%) and 130 (+39.4%) spm. Average step length was reduced as the intensity increased (from 100 to 130 spm), irrespective of water depth. Expressed as a percentage of maximum, average VO2 and HR were: 64–76% of peak VO2 and 71–90% of maximum HR, respectively at both water depths. Accordingly, this form of exercise can be included in the “vigorous” range of exercise intensity, at any of the step frequencies used in this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The aim of this study was to compare through surface electromyographic (sEMG) recordings of the maximum voluntary contraction (MVC) on dry land and in water by manual muscle test (MMT). Method Sixteen healthy right-handed subjects (8 males and 8 females) participated in measurement of muscle activation of the right shoulder. The selected muscles were the cervical erector spinae, trapezius, pectoralis, anterior deltoid, middle deltoid, infraspinatus and latissimus dorsi. The MVC test conditions were random with respect to the order on the land/in water. Results For each muscle, the MVC test was performed and measured through sEMG to determine differences in muscle activation in both conditions. For all muscles except the latissimus dorsi, no significant differences were observed between land and water MVC scores (p = 0.063–0.679) and precision (%Diff = 7–10%) were observed between MVC conditions in the muscles trapezius, anterior deltoid and middle deltoid. Conclusions If the procedure for data collection is optimal, under MMT conditions it appears that comparable MVC sEMG values were achieved on land and in water and the integrity of the EMG recordings were maintained during wáter immersion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated functional, morphological and molecular adaptations to strength training exercise and cold water immersion (CWI) through two separate studies. In one study, 21 physically active men strength trained for 12 weeks (2 d⋅wk–1), with either 10 min of CWI or active recovery (ACT) after each training session. Strength and muscle mass increased more in the ACT group than in the CWI group (P<0.05). Isokinetic work (19%), type II muscle fibre cross-sectional area (17%) and the number of myonuclei per fibre (26%) increased in the ACT group (all P<0.05) but not the CWI group. In another study, nine active men performed a bout of single-leg strength exercises on separate days, followed by CWI or ACT. Muscle biopsies were collected before and 2, 24 and 48 h after exercise. The number of satellite cells expressing neural cell adhesion molecule (NCAM) (10−30%) and paired box protein (Pax7)(20−50%) increased 24–48 h after exercise with ACT. The number of NCAM+ satellitecells increased 48 h after exercise with CWI. NCAM+- and Pax7+-positivesatellite cell numbers were greater after ACT than after CWI (P<0.05). Phosphorylation of p70S6 kinaseThr421/Ser424 increased after exercise in both conditions but was greater after ACT (P<0.05). These data suggest that CWI attenuates the acute changes in satellite cell numbers and activity of kinases that regulate muscle hypertrophy, which may translate to smaller long-term training gains in muscle strength and hypertrophy. The use of CWI as a regular post-exercise recovery strategy should be reconsidered.