981 resultados para Evolved Module
Resumo:
Demand response can play a very relevant role in the context of power systems with an intensive use of distributed energy resources, from which renewable intermittent sources are a significant part. More active consumers participation can help improving the system reliability and decrease or defer the required investments. Demand response adequate use and management is even more important in competitive electricity markets. However, experience shows difficulties to make demand response be adequately used in this context, showing the need of research work in this area. The most important difficulties seem to be caused by inadequate business models and by inadequate demand response programs management. This paper contributes to developing methodologies and a computational infrastructure able to provide the involved players with adequate decision support on demand response programs and contracts design and use. The presented work uses DemSi, a demand response simulator that has been developed by the authors to simulate demand response actions and programs, which includes realistic power system simulation. It includes an optimization module for the application of demand response programs and contracts using deterministic and metaheuristic approaches. The proposed methodology is an important improvement in the simulator while providing adequate tools for demand response programs adoption by the involved players. A machine learning method based on clustering and classification techniques, resulting in a rule base concerning DR programs and contracts use, is also used. A case study concerning the use of demand response in an incident situation is presented.
Resumo:
Trabalho de Projeto submetido à Escola Superior de Teatro e Cinema para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Teatro, Artes Performativas – Especialização em Interpretação.
Resumo:
RESUMO: Com o presente estudo pretendemos identificar a sobrecarga resultante do envolvimento familiar com os doentes portadores de VIH/SIDA. Numa breve introdução teórica, procedemos à revisão dos conceitos sobrecarga familiar e dos sentimentos/emoções vivenciados pelos prestadores de cuidados. Metodologia: Estudo do tipo descritivo e exploratório, com uma amostra de 51 indivíduos, cuja finalidade consiste na caracterização dos prestadores de cuidados familiares a doentes com VIH/SIDA. Objectivos: Identificar quem o doente com VIH/SIDA, considera ser a pessoa significativa nos cuidados informais. Caracterizar, do ponto de vista sócio-demográfico, os doentes e os prestadores de cuidados familiares. Identificar sentimentos e emoções de vivências, que justifiquem o sofrimento emocional e as repercussões na sobrecarga familiar nos prestadores de cuidados informais. Instrumentos: Na avaliação da sobrecarga familiar, utilizámos o Questionário de Problemas Familiares”- FPQ (Family Problemas Questionnaire). Para identificação dos Acontecimentos de Vida, adoptámos a escala de Holmes e Rahe (Life Events); Para identificação do estrato social escolhemos escala de Graffar. Finalmente, para a caracterização sócio-demografica concebemos dois questionários: um dirigido aos doentes e o outro aos prestadores de cuidados informais. Conclusões: A sobrecarga da doença VIH/SIDA, nos prestadores de cuidados familiares, não é uniforme nas diferentes dimensões. A dimensão sobrecarga subjectiva é superior à objectiva. O suporte social revela-se fraco, relacionado com as perdas familiares, devidas a morte, pelas relações familiares disfuncionais, entre os membros da família, pela falta de apoio e informação dos técnicos de saúde. O sexo feminino é predominante nos cuidadores. As mães e esposas são o grau de parentesco dominante. Os solteiros são o grupo mais afectado pelo VIH/SIDA. Os cuidadores apresentam idade superior à dos doentes. O estrato social preponderante é o médio baixo e o baixo. Os familiares, apesar da atitude negativa dos doentes perante os cuidadores, mantêm-se envolvidos. Segundo a avaliação multiaxial proposta pelo DM-IV, constatámos, ao nível do eixo I, sintomatologia clínica do tipo das perturbações depressivas e perturbações da ansiedade. No eixo IV, os cuidadores evidenciam problemas psicossociais e ambientais, nomeadamente nas categorias problemas com o grupo de apoio primário, problemas relacionados como grupo social, problemas educacionais, problemas de alojamento, problemas económicos. Os problemas relacionados com o grupo de apoio primário, são os que mais parecem contribuir para os problemas psicossociais e ambientais.---------------------------------------ABSTRACT: This study wants to describe several problems as a result of the family’s relationship with HIV/AIDS patients, like overload. In a brief theoric introduction, we made a small revision about the concepts of family’s overload, and feelings or emotions that have been lived by the people who provide cares to the patients with this chronic disease. Methodology: This is a describing and exploratory study, with a sample with 51 individuals, with the aim to characterize the people inside the family who give care HIV/AIDS patients. Aim: To identify who are the most important people in informal cares from the patient perspective. To characterize, in a social-demographic point of view, patients and the people who take care of them. To identify feelings and emotions that could explain an emotional suffer, and some causes in the family burden. Means: to evaluate the family’s overload we used the Family Problems Questionnaire (FPQ). To identify life events we adopted the Holmes and Rahe scale. To identify the social stratum we used the Graffer scale. Finally to do a socio-economic characterization we did two kinds of questionnaire, the first one was directed for the patients, and the second one was chosen for the people who give care. Conclusions: The HIV/AIDS disease burden on the people who takes familiar cares isn’t uniform on several areas that we studied. The subjective overload it is superior to the objective. The social support is weak and poor, and related with family losses by dead, dysfunctional family relationships, and the lack of support and information by the medical staff. Mothers and wives are the dominant relative degree. And the singles are the major group with HIV/AIDS disease. The people who take care are usually older than the sick. The major social status is low or medium-low. The relatives keep evolved though the negative attitude of the sick. According with the evaluation multiaxial proposed by the DM-IV, in axle 1 we note clinic sintomatologic belonging to the type depressive perturbations and perturbations of the anxiety. Regarding with axle IV the caretakers show up psycho-social and environmental problems, namely on the categories: problems with the primary support group and problems related as social group, educational problems, accommodation problems and.
Resumo:
As e-learning gradually evolved many specialized and disparate systems appeared to fulfil the needs of teachers and students, such as repositories of learning objects, authoring tools, intelligent tutors and automatic evaluators. This heterogeneity raises interoperability issues giving the standardization of content an important role in e-learning. This article presents a survey on current e-learning content aggregation standards focusing on their internal organization and packaging. This study is part of an effort to choose the most suitable specifications and standards for an e-learning framework called Ensemble defined as a conceptual tool to organize a network of e-learning systems and services for domains with complex evaluation.
Resumo:
Dissertação para a obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia
Resumo:
Dissertação de Mestrado para obtenção do grau de Mestre em Engenharia Eletrotécnica Ramo Automação e Eletrónica Industrial
Resumo:
Modular design is crucial to manage large-scale systems and to support the divide-and-conquer development approach. It allows hierarchical representations and, therefore, one can have a system overview, as well as observe component details. Petri nets are suitable to model concurrent systems, but lack on structuring mechanisms to support abstractions and the composition of sub-models, in particular when considering applications to embedded controllers design. In this paper we present a module construct, and an underlying high-level Petri net type, to model embedded controllers. Multiple interfaces can be declared in a module, thus, different instances of the same module can be used in different situations. The interface is a subset of the module nodes, through which the communication with the environment is made. Module places can be annotated with a generic type, overridden with a concrete type at instance level, and constants declared in a module may have a new value in each instance.
Resumo:
Engenharia Informática, Área de Especialização em Sistemas Gráficos e Multimédia
Resumo:
Hyperspectral imaging has become one of the main topics in remote sensing applications, which comprise hundreds of spectral bands at different (almost contiguous) wavelength channels over the same area generating large data volumes comprising several GBs per flight. This high spectral resolution can be used for object detection and for discriminate between different objects based on their spectral characteristics. One of the main problems involved in hyperspectral analysis is the presence of mixed pixels, which arise when the spacial resolution of the sensor is not able to separate spectrally distinct materials. Spectral unmixing is one of the most important task for hyperspectral data exploitation. However, the unmixing algorithms can be computationally very expensive, and even high power consuming, which compromises the use in applications under on-board constraints. In recent years, graphics processing units (GPUs) have evolved into highly parallel and programmable systems. Specifically, several hyperspectral imaging algorithms have shown to be able to benefit from this hardware taking advantage of the extremely high floating-point processing performance, compact size, huge memory bandwidth, and relatively low cost of these units, which make them appealing for onboard data processing. In this paper, we propose a parallel implementation of an augmented Lagragian based method for unsupervised hyperspectral linear unmixing on GPUs using CUDA. The method called simplex identification via split augmented Lagrangian (SISAL) aims to identify the endmembers of a scene, i.e., is able to unmix hyperspectral data sets in which the pure pixel assumption is violated. The efficient implementation of SISAL method presented in this work exploits the GPU architecture at low level, using shared memory and coalesced accesses to memory.
Resumo:
Mestrado em Engenharia Química - Ramo Otimização Energética na Indústria Química
Resumo:
Mestrado em Engenharia Informática - Área de Especialização em Arquiteturas, Sistemas e Redes
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Mecânica Especialização em Concepção e Produção
Resumo:
Hyperspectral remote sensing exploits the electromagnetic scattering patterns of the different materials at specific wavelengths [2, 3]. Hyperspectral sensors have been developed to sample the scattered portion of the electromagnetic spectrum extending from the visible region through the near-infrared and mid-infrared, in hundreds of narrow contiguous bands [4, 5]. The number and variety of potential civilian and military applications of hyperspectral remote sensing is enormous [6, 7]. Very often, the resolution cell corresponding to a single pixel in an image contains several substances (endmembers) [4]. In this situation, the scattered energy is a mixing of the endmember spectra. A challenging task underlying many hyperspectral imagery applications is then decomposing a mixed pixel into a collection of reflectance spectra, called endmember signatures, and the corresponding abundance fractions [8–10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. Linear mixing model holds approximately when the mixing scale is macroscopic [13] and there is negligible interaction among distinct endmembers [3, 14]. If, however, the mixing scale is microscopic (or intimate mixtures) [15, 16] and the incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [17], the linear model is no longer accurate. Linear spectral unmixing has been intensively researched in the last years [9, 10, 12, 18–21]. It considers that a mixed pixel is a linear combination of endmember signatures weighted by the correspondent abundance fractions. Under this model, and assuming that the number of substances and their reflectance spectra are known, hyperspectral unmixing is a linear problem for which many solutions have been proposed (e.g., maximum likelihood estimation [8], spectral signature matching [22], spectral angle mapper [23], subspace projection methods [24,25], and constrained least squares [26]). In most cases, the number of substances and their reflectances are not known and, then, hyperspectral unmixing falls into the class of blind source separation problems [27]. Independent component analysis (ICA) has recently been proposed as a tool to blindly unmix hyperspectral data [28–31]. ICA is based on the assumption of mutually independent sources (abundance fractions), which is not the case of hyperspectral data, since the sum of abundance fractions is constant, implying statistical dependence among them. This dependence compromises ICA applicability to hyperspectral images as shown in Refs. [21, 32]. In fact, ICA finds the endmember signatures by multiplying the spectral vectors with an unmixing matrix, which minimizes the mutual information among sources. If sources are independent, ICA provides the correct unmixing, since the minimum of the mutual information is obtained only when sources are independent. This is no longer true for dependent abundance fractions. Nevertheless, some endmembers may be approximately unmixed. These aspects are addressed in Ref. [33]. Under the linear mixing model, the observations from a scene are in a simplex whose vertices correspond to the endmembers. Several approaches [34–36] have exploited this geometric feature of hyperspectral mixtures [35]. Minimum volume transform (MVT) algorithm [36] determines the simplex of minimum volume containing the data. The method presented in Ref. [37] is also of MVT type but, by introducing the notion of bundles, it takes into account the endmember variability usually present in hyperspectral mixtures. The MVT type approaches are complex from the computational point of view. Usually, these algorithms find in the first place the convex hull defined by the observed data and then fit a minimum volume simplex to it. For example, the gift wrapping algorithm [38] computes the convex hull of n data points in a d-dimensional space with a computational complexity of O(nbd=2cþ1), where bxc is the highest integer lower or equal than x and n is the number of samples. The complexity of the method presented in Ref. [37] is even higher, since the temperature of the simulated annealing algorithm used shall follow a log( ) law [39] to assure convergence (in probability) to the desired solution. Aiming at a lower computational complexity, some algorithms such as the pixel purity index (PPI) [35] and the N-FINDR [40] still find the minimum volume simplex containing the data cloud, but they assume the presence of at least one pure pixel of each endmember in the data. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. PPI algorithm uses the minimum noise fraction (MNF) [41] as a preprocessing step to reduce dimensionality and to improve the signal-to-noise ratio (SNR). The algorithm then projects every spectral vector onto skewers (large number of random vectors) [35, 42,43]. The points corresponding to extremes, for each skewer direction, are stored. A cumulative account records the number of times each pixel (i.e., a given spectral vector) is found to be an extreme. The pixels with the highest scores are the purest ones. N-FINDR algorithm [40] is based on the fact that in p spectral dimensions, the p-volume defined by a simplex formed by the purest pixels is larger than any other volume defined by any other combination of pixels. This algorithm finds the set of pixels defining the largest volume by inflating a simplex inside the data. ORA SIS [44, 45] is a hyperspectral framework developed by the U.S. Naval Research Laboratory consisting of several algorithms organized in six modules: exemplar selector, adaptative learner, demixer, knowledge base or spectral library, and spatial postrocessor. The first step consists in flat-fielding the spectra. Next, the exemplar selection module is used to select spectral vectors that best represent the smaller convex cone containing the data. The other pixels are rejected when the spectral angle distance (SAD) is less than a given thresh old. The procedure finds the basis for a subspace of a lower dimension using a modified Gram–Schmidt orthogonalizati on. The selected vectors are then projected onto this subspace and a simplex is found by an MV T pro cess. ORA SIS is oriented to real-time target detection from uncrewed air vehicles using hyperspectral data [46]. In this chapter we develop a new algorithm to unmix linear mixtures of endmember spectra. First, the algorithm determines the number of endmembers and the signal subspace using a newly developed concept [47, 48]. Second, the algorithm extracts the most pure pixels present in the data. Unlike other methods, this algorithm is completely automatic and unsupervised. To estimate the number of endmembers and the signal subspace in hyperspectral linear mixtures, the proposed scheme begins by estimating sign al and noise correlation matrices. The latter is based on multiple regression theory. The signal subspace is then identified by selectin g the set of signal eigenvalue s that best represents the data, in the least-square sense [48,49 ], we note, however, that VCA works with projected and with unprojected data. The extraction of the end members exploits two facts: (1) the endmembers are the vertices of a simplex and (2) the affine transformation of a simplex is also a simplex. As PPI and N-FIND R algorithms, VCA also assumes the presence of pure pixels in the data. The algorithm iteratively projects data on to a direction orthogonal to the subspace spanned by the endmembers already determined. The new end member signature corresponds to the extreme of the projection. The algorithm iterates until all end members are exhausted. VCA performs much better than PPI and better than or comparable to N-FI NDR; yet it has a computational complexity between on e and two orders of magnitude lower than N-FINDR. The chapter is structure d as follows. Section 19.2 describes the fundamentals of the proposed method. Section 19.3 and Section 19.4 evaluate the proposed algorithm using simulated and real data, respectively. Section 19.5 presents some concluding remarks.
Utilização de coberturas ajardinadas de vegetação intensiva, extensiva e horta urbana em edificações
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Civil
Resumo:
A otimização nos sistemas de suporte à decisão atuais assume um carácter fortemente interdisciplinar relacionando-se com a necessidade de integração de diferentes técnicas e paradigmas na resolução de problemas reais complexos, sendo que a computação de soluções ótimas em muitos destes problemas é intratável. Os métodos de pesquisa heurística são conhecidos por permitir obter bons resultados num intervalo temporal aceitável. Muitas vezes, necessitam que a parametrização seja ajustada de forma a permitir obter bons resultados. Neste sentido, as estratégias de aprendizagem podem incrementar o desempenho de um sistema, dotando-o com a capacidade de aprendizagem, por exemplo, qual a técnica de otimização mais adequada para a resolução de uma classe particular de problemas, ou qual a parametrização mais adequada de um dado algoritmo num determinado cenário. Alguns dos métodos de otimização mais usados para a resolução de problemas do mundo real resultaram da adaptação de ideias de várias áreas de investigação, principalmente com inspiração na natureza - Meta-heurísticas. O processo de seleção de uma Meta-heurística para a resolução de um dado problema é em si um problema de otimização. As Híper-heurísticas surgem neste contexto como metodologias eficientes para selecionar ou gerar heurísticas (ou Meta-heurísticas) na resolução de problemas de otimização NP-difícil. Nesta dissertação pretende-se dar uma contribuição para o problema de seleção de Metaheurísticas respetiva parametrização. Neste sentido é descrita a especificação de uma Híperheurística para a seleção de técnicas baseadas na natureza, na resolução do problema de escalonamento de tarefas em sistemas de fabrico, com base em experiência anterior. O módulo de Híper-heurística desenvolvido utiliza um algoritmo de aprendizagem por reforço (QLearning), que permite dotar o sistema da capacidade de seleção automática da Metaheurística a usar no processo de otimização, assim como a respetiva parametrização. Finalmente, procede-se à realização de testes computacionais para avaliar a influência da Híper- Heurística no desempenho do sistema de escalonamento AutoDynAgents. Como conclusão genérica, é possível afirmar que, dos resultados obtidos é possível concluir existir vantagem significativa no desempenho do sistema quando introduzida a Híper-heurística baseada em QLearning.