940 resultados para Ethanol adsorption
Resumo:
Different mechanisms for the formation of acetaldehyde and ethanol on the Rh-based catalysts were investigated by the TPR (temperature programmed reaction) method, and the active sites were studied by CO-TPD, TPSR (temperature programmed surface reaction of preadsorbed CO by H-2) and XPS techniques. The TPR results indicated that ethanol and acetaldehyde might be formed through different intermediates, whereas ethanol and methanol might result from the same intermediate. Results of CO-TPD, TPSR, and XPS showed that on the Rh-based catalyst, the structure of the active sites for the formation of C-2-oxygenates is ((RhxRhy+)-Rh-0)-O-Mn+ (M=Mn or Zr, x>>y, 2 less than or equal ton less than or equal to4). The tilt-adsorbed CO species is the main precursor for CO dissociation and the precursor for the formation of ethanol and methanol. Most of the linear and geminal adsorbed CO species desorbed below 500 K. Based on the suggested model of the active sites, detailed mechanisms for the formation of acetaldehyde and ethanol are proposed. Ethanol is formed by direct hydrogenation of the tilt-adsorbed CO molecules, followed by CH2 insertion into the surface CH2-O species and the succeeding hydrogenation step. Acetaldehyde is formed through CO insertion into the surface CH3-Rh species followed by hydrogenation, and the role of the promoters was to stabilize the intermediate of the surface acetyl species. (C) 2000 Academic Press.
Resumo:
For the design of affinity membranes, protein adsorption in membrane affinity chromatography (MAC) was studied by frontal analysis. According to fast mass transfer, small thickness of affinity membranes and high affinity between the protein and the ligand, an ideal adsorption (IA) model was proposed for MAC and was used together with equilibrium-dispersive (E-D) model to describe the adsorption of bovine serum albumin (BSA) onto cellulose diacetate/polyethyleneimine (CA/PEI) blend membranes with and without Cu2+ chelating. E-D model was found to better describe the initial region of experimental breakthrough curves. The influence of axial dispersion was revealed and it showed the importance of design of the module to homogenously distribute feed solution. IA model was found to be better for the whole experimental breakthrough curve. According to it, the capacity of affinity membranes and the specificity of the interaction are of equal importance for the design of affinity membranes. An optimum feed concentration was also found in the operation of MAC. The discrepancy between experimental optimum feed concentrations and predicted ones from IA model may be due to the ignorance of some experimental effects such as axial dispersion.
Resumo:
The adsorption and desorption coefficients of atrazine, methiocarb and simazine on a sandy loam soil were measured in this study with soil column liquid chromatographic (SCLC) technique. The adsorption and desorption data of all the three pesticides followed Freundlich isotherms revealing the existence of hysteresis. In comparing with other methods, SCLC method showed some characteristics such as rapidity, online and accuracy.
Resumo:
The structural features and catalytic properties of Pt-Sn/CeO2 catalysts prepared by modified polyol method were extensively investigated for the complete oxidation of ethanol. CO chemisorption, TPR, DTA and XPS measurements identically indicated that the electronic configuration of Pt by Sn as well as the formation of PtSn alloy were the key factors in determining the nature of the active sites, A strong Pt/Sn atomic ratio dependence of catalytic perfortmances was observed. which was explained in terms of the change., in the Surface structure of metal phases and the electronic Pt-Sn interaction. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Steam reforming of ethanol over CuO/CeO2 was studied. Acetaldehyde and hydrogen were mainly produced at 260degreesC. At 380degreesC, acetone was the main product, and 2 mol of hydrogen was produced from 1 mol of ethanol. The formation of hydrogen accompanied by the production of acetone was considered to proceed through the following, consecutive reactions: dehydrogenation of ethanol to acetaldehyde. aldol condensation of the acetaldehyde, and the reaction of the aldol with the lattice oxygen [O(s)] on the catalyst to form a surface intermediate, followed by its dehydrogenation and decarboxylation. The overall reaction was expressed by2C(2)H(5)OH + H2O --> CH3COCH3 + CO2 + 4H(2). Ceria played an important role as an oxygen supplier. The addition of MgO to CuO/CeO2 resulted in the production of hydrogen at lower temperatures by accelerating aldol condensation. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
To elucidate the physicochemical properties of silk protein, we studied the effects of calcium chloride and ethanol on the gelation of fibroin. Fibroin was treated with 5.0 M calcium chloride in water (Ca/W) or 5.0 M calcium chloride in 20% (v/v) ethanol (Ca/Et) and the rheological properties of colloidal fibroin were investigated. The Ca/W-treatment promoted an increased rate of gelation and gave higher gel strength than the Ca/Et-treatment. The maximum gel strengths of Ca/W- and Ca/Et-treated fibroins were obtained at pH 7.0 and pH 5.5, respectively. Scanning electron micrographs showed that the Ca/W-treated fibroin gel had a more developed three-dimensional molecular network than the Ca/Et-treated gel. Further, FT-IR spectra suggested that Ca/W-treated fibroin has more of a beta-structure than Ca/Et-treated one in colloidal conditions. This study indicated that the use of calcium chloride alone was more beneficial to the gelation of fibroin than combined use with ethanol.
Resumo:
A highly active and selective K-Pd/MnOx-ZrO2-ZnO catalyst for the one-step synthesis of 2-pentanone from ethanol is described. The possible reaction pathways for ethanol reaction over K-Pd/MnOx-ZrO2-ZnO catalyst were investigated by means of TPSR, CO2- and NH3-TPD techniques. The reactions were performed in a fixed bed continuous flow reactor. Complete conversion with high selectivity for 2-pentanone, was observed under 370 similar to 390degreesC, 2 similar to 4 MPa, GHSV = 8000 similar to 10,000 h(-1) and LHSV < 1.25 h(-1) conditions. Ethanol reactions over K-Pd/MnOx-ZrO2-ZnO catalyst showed that the catalyst could catalyze dehydrogenation. aldol. dehydration and hydrogenation reactions. Both acidic and basic properties are found on the surface of K-Pd/MnOx-ZrO2-ZnO catalyst, whose multifunctionality with the combination of basic, acid and metal sites may be responsible for the efficiency of the K-PdMnOx-ZrO2-ZnO catalyst. (C) 2004 Elsevier B.V. All rights reserved.
Direct ethanol fuel cells based on PtSn anodes:the effect of Sn content on the fuel cell performance